哈希

在这里插入图片描述

欢迎来到Cefler的博客😁
🕌博客主页:那个传说中的man的主页
🏠个人专栏:题目解析
🌎推荐文章:题目大解析(3)

在这里插入图片描述


目录

  • 👉🏻unordered系列关联式容器
    • unordered_map
    • unordered_set
  • 👉🏻哈希概念
  • 👉🏻哈希函数
  • 👉🏻哈希冲突
  • 👉🏻 哈希冲突解决方法
    • 闭散列
      • 线性探测
  • 👉🏻哈希闭散列模拟实现
    • 哈希数据和哈希状态
    • 返回哈希值的key
    • 哈希插入(含扩容和线性探测)
    • 哈希查找
    • 哈希的伪删除
    • 哈希打印
    • 哈希闭散列完整代码附测试代码
  • 👉🏻哈希开散列(哈希桶)模拟实现
    • 概念
    • 哈希节点
    • 哈希插入(含扩容)
    • 析构函数
    • 返回哈希值的key
    • 哈希查找
    • 哈希删除
    • 显示哈希的一些情况(桶的数量、长度等)
    • 哈希开散列完整代码附测试代码

👉🏻unordered系列关联式容器

在C++98中,STL提供了底层为红黑树结构的一系列关联式容器,在查询时效率可达到 l o g 2 N log_2 N log2N,即最差情况下需要比较红黑树的高度次,当树中的节点非常多时,查询效率也不理想。最好的查询是,进行很少的比较次数就能够将元素找到,因此在C++11中,STL又提供了4个unordered系列的关联式容器,这四个容器与红黑树结构的关联式容器使用方式基本类似,只是其底层结构不同(unordered系列底层是哈希表)

unordered_map

unordered_map官方文档: unordered_map

  1. unordered_map是存储<key, value>键值对的关联式容器,其允许通过keys快速的索引到与
    其对应的value。
  2. 在unordered_map中,键值通常用于惟一地标识元素,而映射值是一个对象,其内容与此
    键关联。键和映射值的类型可能不同。
  3. 在内部,unordered_map没有对<kye, value>按照任何特定的顺序排序, 为了能在常数范围内
    找到key所对应的value,unordered_map将相同哈希值的键值对放在相同的桶中。
  4. unordered_map容器通过key访问单个元素要比map快,但它通常在遍历元素子集的范围迭
    代方面效率较低。
  5. unordered_maps实现了直接访问操作符(operator[]),它允许使用key作为参数直接访问
    value。
  6. 它的迭代器至少是前向迭代器

unordered_set

unordered_set官方文档:unordered_set

1.无序集合是存储没有特定顺序的唯一元素的容器,它允许基于它们的值快速检索单个元素。

2.在unordered_set中,元素的值同时也是唯一标识它的键。键是不可变的,因此,在容器中不能修改unordered_set中的元素——但是可以插入和删除它们。

3.在内部,unordered_set中的元素没有按照任何特定的顺序排序,而是根据它们的散列值组织到bucket中,以便通过它们的值直接快速访问单个元素(平均时间复杂度为常数)。

4.Unordered_set容器在按键访问单个元素时比set容器快,尽管它们在通过其元素子集进行范围迭代时通常效率较低。

5.容器中的迭代器至少是前向迭代器。

👉🏻哈希概念

顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O( l o g 2 N log_2 N log2N),搜索的效率取决于搜索过程中元素的比较次数。

理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素

如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素。
当向该结构中:

  • 插入元素
    根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放
  • 搜索元素
    对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功

该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数构造出来的结构称为哈希表(Hash Table)(或者称散列表)

  • 哈希/散列:映射,关键字和另一个值建立一个关联关系

  • 哈希表/散列表:映射,关键字和存储位置建立一个关联关系


👉🏻哈希函数

引起哈希冲突的一个原因可能是:哈希函数设计不够合理
哈希函数设计原则:

  • 哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间
  • 哈希函数计算出来的地址能均匀分布在整个空间中
  • 哈希函数应该比较简单

☃️常见的哈希函数有

  1. 直接定址法–(常用)
    取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B
    优点:简单、均匀,关键字—存储位置是一对一的关系,不存在哈希冲突
    缺点:需要事先知道关键字的分布情况
    使用场景:关键字范围集中,量不大的情况

  2. 除留余数法–(常用)
    设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,
    按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址
    其关键字-存储位置是多对一的关系,多个关键字对应一个位置,存在哈希冲突
    使用场景:关键字可以很分散,量可以很大


例如该下面这个就是采取除留余数法

数据集合:{1,7,6,4,5,9};
哈希函数设置为:hash(key) = key % capacity; capacity为存储元素底层空间总的大小。

在这里插入图片描述
用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快
问题:按照上述哈希方式,向集合中插入元素44,会出现什么问题?

👉🏻哈希冲突

🧋 概念 概念 概念
对于两个数据元素的关键字 k i k_i ki k j k_j kj(i != j),有 k i k_i ki != k j k_j kj,但有:Hash( k i k_i ki) == Hash( k j k_j kj),即:不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突哈希碰撞

把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”
发生哈希冲突该如何处理呢? 🤔

👉🏻 哈希冲突解决方法

闭散列

闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有
空位置
,那么可以把key存放到冲突位置中的“下一个” 空位置中去。那如何寻找下一个空位置呢?

线性探测

比如刚刚的场景中,现在需要插入元素44,先通过哈希函数计算哈希地址,hashAddr为4,
因此44理论上应该插在该位置,但是该位置已经放了值为4的元素,即发生哈希冲突
线性探测从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止
线性探测向后找可以表示为:hashi+i(i>=0)

即线性探测的插入和删除表现为:

  • 插入

1.通过哈希函数获取待插入元素在哈希表中的位置
2.如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,使用线性探测找到下一个空位置,插入新元素

  • 删除

采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。比如删除元素4,如果直接删除掉,44查找起来可能会受影响,因为我们查找到4时,此时4的位置为空,我们就停下来了不往后找,自然就找不到44了。因此线性探测采用标记的伪删除法(标记状态为DELETE)来删除一个元素。

👉🏻哈希闭散列模拟实现

哈希数据和哈希状态

enum Status{EMPTY,EXIST,DELETE};template <class K, class V>struct HashData{pair<K, V> _kv;Status _s;};

返回哈希值的key

1.常规类型返回:如int、double等

template <class  K>struct HashFunc{operator()(const K& key){return (size_t)key;}};

2.字符串类型返回
这个就不能直接返回字符串,因为字符串是不能用于取余的,但是我们可以将字符串中的每一个字符的ASCII码值全部相加以整型的形式返回即可。
但是我们知道字符串的组合是无数种的,可size_t的值却是有上限的,那么多字符串最终会有很多字符串相加的ASCII码值会相等,这就会发生哈希冲突。对于哈希冲突,我们不可避免,但是在这个基础上,有算法大佬提供了牛逼的算法,可以减少这之间的哈希冲突的产生。
以下是一个著名的BRDK算法
在这里插入图片描述
我们借鉴这个算法进行将字符串转换为整型返回

template<>struct HashFunc<string>{size_t operator()(const string& key){size_t hash = 0;for (auto e : key){hash = hash * 31 + e;}return hash;}};

我们观察到针对于这两种情况,我们都是采用了模板进行实例化,而字符串类型返回比较特殊这边用了全特化。
有人可能会问,为什么不把写成类的函数重载,而是用模板特化?
答案是这里会出现坑,当我们进行函数重载时,如果传进来的K是string,此时类中就会有两个size_t operator()(const string& key),发生冲突。
而特化就可以解决这个问题。

哈希插入(含扩容和线性探测)

🌊扩容

//如果空间不够?//负载因子0.7就扩容if (_n * 10 / _tables.capacity() == 7){//不能原地扩容,因为原地扩容会使映射关系发生变化,比如size(10)->size(20),原本3的位置会变到13去//所以我们开辟新空间size_t newSize = _tables.size() * 2;HashTable<K, V,Hash> newHT;newHT._tables.resize(newSize);//遍历旧表,将旧表的值插入到新表中for (int i = 0; i < _tables.size(); i++){if (_tables[i]._s == EXIST){newHT.Insert(_tables[i]._kv);}}//最后旧表变新表_tables.swap(newHT._tables);}

🌊线性探测:

Hash hf;//HashFuncsize_t hashi = hf(kv.first) % _tables.size();//size_t可以解决负数问题,负数隐式类型转换为无符号while (_tables[hashi]._s== EXIST) {//存在则找下一个空位置hashi++;hashi %= _tables.size();}_tables[hashi]._kv = kv;_tables[hashi]._s = EXIST;++_n;return true;

整体插入代码

bool Insert(const pair<K, V>& kv){if (Find(kv.first))return false;//如果空间不够?//负载因子0.7就扩容if (_n * 10 / _tables.capacity() == 7){//不能原地扩容,因为原地扩容会使映射关系发生变化,比如size(10)->size(20),原本3的位置会变到13去//所以我们开辟新空间size_t newSize = _tables.size() * 2;HashTable<K, V,Hash> newHT;newHT._tables.resize(newSize);//遍历旧表,将旧表的值插入到新表中for (int i = 0; i < _tables.size(); i++){if (_tables[i]._s == EXIST){newHT.Insert(_tables[i]._kv);}}//最后旧表变新表_tables.swap(newHT._tables);}//线性探测Hash hf;//HashFuncsize_t hashi = hf(kv.first) % _tables.size();//size_t可以解决负数问题,负数隐式类型转换为无符号while (_tables[hashi]._s== EXIST) {//存在则找下一个空位置hashi++;hashi %= _tables.size();}_tables[hashi]._kv = kv;_tables[hashi]._s = EXIST;++_n;return true;}

哈希查找

//哈希查找HashData<K, V>* Find(const K& key){Hash hf;size_t hashi = hf(key) % _tables.size();while (_tables[hashi]._s != EMPTY){if (_tables[hashi]._s == EXIST && _tables[hashi]._kv.first == key){return &_tables[hashi];}++hashi;hashi %= _tables.size();}return nullptr;}

哈希的伪删除

伪删除就很简单,直接找到对应的位置,将该位置的状态改为DELETE,然后_n减一即可。

//伪删除bool Erase(const K& key){HashData<K, V>* ret = Find(key);if (ret){ret->_s = DELETE;_n--;return true;}elsereturn false;}

哈希打印

//打印void Print(){for (size_t i = 0; i < _tables.size(); i++){if (_tables[i]._s == EXIST){//printf("[%d]->%d\n", i, _tables[i]._kv.first);cout << "[" << i << "]->" << _tables[i]._kv.first << ":" << _tables[i]._kv.second << endl;}else if (_tables[i]._s == EMPTY){printf("[%d]->\n", i);}else{printf("[%d]->D\n", i);}}cout << endl;}

哈希闭散列完整代码附测试代码

#pragma once
#include<iostream>
#include<vector>
using namespace std;
namespace close_address
{enum Status{EMPTY,EXIST,DELETE};template <class K, class V>struct HashData{pair<K, V> _kv;Status _s;};//返回哈希的key//1.常规类型template <class  K>struct HashFunc{size_t operator()(const K& key){return (size_t)key;}};//2.字符串转换为整型返回template<>struct HashFunc<string>{size_t operator()(const string& key){size_t hash = 0;for (auto e : key){hash = hash * 31 + e;}return hash;}};template <class K,class V,class Hash = HashFunc<K>>class HashTable{public:HashTable(){_tables.resize(10);//一开始扩容为10}bool Insert(const pair<K, V>& kv){if (Find(kv.first))return false;//如果空间不够?//负载因子0.7就扩容if (_n * 10 / _tables.capacity() == 7){//不能原地扩容,因为原地扩容会使映射关系发生变化,比如size(10)->size(20),原本3的位置会变到13去//所以我们开辟新空间size_t newSize = _tables.size() * 2;HashTable<K, V,Hash> newHT;newHT._tables.resize(newSize);//遍历旧表,将旧表的值插入到新表中for (int i = 0; i < _tables.size(); i++){if (_tables[i]._s == EXIST){newHT.Insert(_tables[i]._kv);}}//最后旧表变新表_tables.swap(newHT._tables);}//线性探测Hash hf;//HashFuncsize_t hashi = hf(kv.first) % _tables.size();//size_t可以解决负数问题,负数隐式类型转换为无符号while (_tables[hashi]._s== EXIST) {//存在则找下一个空位置hashi++;hashi %= _tables.size();}_tables[hashi]._kv = kv;_tables[hashi]._s = EXIST;++_n;return true;}//哈希查找HashData<K, V>* Find(const K& key){Hash hf;size_t hashi = hf(key) % _tables.size();while (_tables[hashi]._s != EMPTY){if (_tables[hashi]._s == EXIST && _tables[hashi]._kv.first == key){return &_tables[hashi];}++hashi;hashi %= _tables.size();}return nullptr;}//伪删除bool Erase(const K& key){HashData<K, V>* ret = Find(key);if (ret){ret->_s = DELETE;_n--;return true;}elsereturn false;}//打印void Print(){for (size_t i = 0; i < _tables.size(); i++){if (_tables[i]._s == EXIST){//printf("[%d]->%d\n", i, _tables[i]._kv.first);cout << "[" << i << "]->" << _tables[i]._kv.first << ":" << _tables[i]._kv.second << endl;}else if (_tables[i]._s == EMPTY){printf("[%d]->\n", i);}else{printf("[%d]->D\n", i);}}cout << endl;}private:vector<HashData<K,V>> _tables;size_t _n = 0;//存储关键字的个数};void TestHT1(){HashTable<int, int> ht;int a[] = { 4,14,24,34,5,7,1 };for (auto e : a){ht.Insert(make_pair(e, e));}ht.Print();}void TestHT2(){string arr[] = { "香蕉", "甜瓜","苹果", "西瓜", "苹果", "西瓜", "苹果", "苹果", "西瓜", "苹果", "香蕉", "苹果", "香蕉" };//HashTable<string, int, HashFuncString> ht;HashTable<string, int> ht;for (auto& e : arr){//auto ret = ht.Find(e);HashData<string, int>* ret = ht.Find(e);if (ret){ret->_kv.second++;}else{ht.Insert(make_pair(e, 1));}}ht.Print();ht.Insert(make_pair("apple", 1));ht.Insert(make_pair("sort", 1));ht.Insert(make_pair("abc", 1));ht.Insert(make_pair("acb", 1));ht.Insert(make_pair("aad", 1));ht.Print();}
}

👉🏻哈希开散列(哈希桶)模拟实现

概念

开放寻址法(Open Addressing)是一种解决哈希冲突的方法。在开放寻址法中,当发生冲突时,会通过一定的探测序列(如线性探测、二次探测等)在哈希表中的其他位置继续寻找空闲槽来存储冲突的元素。

开散列(Open Hashing),也被称为链地址法(Chaining),是另一种解决哈希冲突的方法。在开散列中,具有相同地
址的关键码归于同一子集合,每一个子集合称为一个桶
,当发生哈希冲突时,冲突的元素会被链接成一个链表或其他数据结构存储在同一个桶中。

在这里插入图片描述

哈希节点

template<class K,class V>struct HashNode{HashNode<K, V>* _next;pair<K, V> _kv;HashNode(const HashNode<K,V>& kv):_kv(kv._kv),_next(nullptr){}};

哈希插入(含扩容)

bool Insert(const pair<K, V>& kv){if (Find(kv.first))return false;//扩容,这里负载因子可以最大到1if (_n == _tables.size()){size_t newSize() = _tables.size() * 2;HashTable<K,V> newHT;newHT._tables.resize(newSize);//遍历旧表,插入新表for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){newHT.Insert(cur->_kv);cur = cur->_next;}}_tables.swap(newHT._tables);}//插入的新节点头插Hash hf;size_t hashi = hf(kv.first) % _tables.size();Node* newnode = new Node(kv);newnode->_next = _tables[hashi];_tables[hashi] = newnode;_n++;return true;}

扩容方法2:

if (_n == _tables.size()){vector<Node*> newTables;newTables.resize(_tables.size() * 2, nullptr);// 遍历旧表for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while(cur){Node* next = cur->_next;// 挪动到映射的新表size_t hashi = hf(cur->_kv.first) % newTables.size();cur->_next = newTables[i];newTables[i] = cur;cur = next;}_tables[i] = nullptr;}_tables.swap(newTables);}

析构函数

~HashTable(){for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;delete cur;cur = next;}_tables[i] = nullptr;}}

返回哈希值的key

//返回哈希的key//1.常规类型template <class  K>struct HashFunc{size_t operator()(const K& key){return (size_t)key;}};//2.字符串转换为整型返回template<>struct HashFunc<string>{size_t operator()(const string& key){size_t hash = 0;for (auto e : key){hash = hash * 31 + e;}return hash;}};

哈希查找

//哈希查找Node* Find(const K& key){Hash hf;size_t hashi = hf(key) % _tables.size();Node* cur = _tables[hashi];while (cur){if (cur->_next == key){return cur;}cur = cur->_next;}return nullptr;}

哈希删除

//哈希删除bool Erase(const K& key){Hash hf;size_t hashi = hf(key) % _tables.size();Node* cur = _tables[hashi];Node* prev = nullptr;while (cur){if (cur->_kv.first == key){if (prev == nullptr){_tables[hashi] = cur->_next;}else{prev->_next = cur->_next;}delete cur;return true ;}prev = cur;cur = cur->_next;}return false;}

显示哈希的一些情况(桶的数量、长度等)

void Some(){size_t bucketSize = 0;size_t maxBucketLen = 0;size_t sum = 0;double averageBucketLen = 0;for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];if (cur){++bucketSize;}size_t bucketLen = 0;while (cur){++bucketLen;cur = cur->_next;}sum += bucketLen;if (bucketLen > maxBucketLen){maxBucketLen = bucketLen;}}averageBucketLen = (double)sum / (double)bucketSize;printf("all bucketSize:%d\n", _tables.size());printf("bucketSize:%d\n", bucketSize);printf("maxBucketLen:%d\n", maxBucketLen);printf("averageBucketLen:%lf\n\n", averageBucketLen);}

哈希开散列完整代码附测试代码

#pragma once
#include<iostream>
#include<vector>
#include<unordered_set>
#include<set>
using namespace std;
namespace hash_bucket
{template<class K,class V>struct HashNode{HashNode<K, V>* _next;pair<K, V> _kv;HashNode(const pair<K,V>& kv):_kv(kv),_next(nullptr){}};//返回哈希的key//1.常规类型template <class  K>struct HashFunc{size_t operator()(const K& key){return (size_t)key;}};//2.字符串转换为整型返回template<>struct HashFunc<string>{size_t operator()(const string& key){size_t hash = 0;for (auto e : key){hash = hash * 31 + e;}return hash;}};template<class K,class V,class Hash = HashFunc<K>>class HashTable{public:typedef HashNode<K, V> Node;HashTable(){_tables.resize(10);}~HashTable(){for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;delete cur;cur = next;}_tables[i] = nullptr;}}bool Insert(const pair<K, V>& kv){if (Find(kv.first))return false;//扩容,这里负载因子可以最大到1if (_n == _tables.size()){size_t newSize = _tables.size() * 2;HashTable<K,V> newHT;newHT._tables.resize(newSize);//遍历旧表,插入新表for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){newHT.Insert(cur->_kv);cur = cur->_next;}}_tables.swap(newHT._tables);}//插入的新节点头插Hash hf;size_t hashi = hf(kv.first) % _tables.size();Node* newnode = new Node(kv);newnode->_next = _tables[hashi];_tables[hashi] = newnode;_n++;return true;}//哈希查找Node* Find(const K& key){Hash hf;size_t hashi = hf(key) % _tables.size();Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key){return cur;}cur = cur->_next;}return nullptr;}//哈希删除bool Erase(const K& key){Hash hf;size_t hashi = hf(key) % _tables.size();Node* cur = _tables[hashi];Node* prev = nullptr;while (cur){if (cur->_kv.first == key){if (prev == nullptr){_tables[hashi] = cur->_next;}else{prev->_next = cur->_next;}delete cur;return true ;}prev = cur;cur = cur->_next;}return false;}void Some(){size_t bucketSize = 0;size_t maxBucketLen = 0;size_t sum = 0;double averageBucketLen = 0;for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];if (cur){++bucketSize;}size_t bucketLen = 0;while (cur){++bucketLen;cur = cur->_next;}sum += bucketLen;if (bucketLen > maxBucketLen){maxBucketLen = bucketLen;}}averageBucketLen = (double)sum / (double)bucketSize;printf("all bucketSize:%d\n", _tables.size());printf("bucketSize:%d\n", bucketSize);printf("maxBucketLen:%d\n", maxBucketLen);printf("averageBucketLen:%lf\n\n", averageBucketLen);}private:vector<Node*> _tables;size_t _n = 0;};void TestHT1(){HashTable<int, int> ht;int a[] = { 4,14,24,34,5,7,1,15,25,3 };for (auto e : a){ht.Insert(make_pair(e, e));}ht.Insert(make_pair(13, 13));cout << ht.Find(4) << endl;ht.Erase(4);cout << ht.Find(4) << endl;}void TestHT2(){string arr[] = { "香蕉", "甜瓜","苹果", "西瓜", "苹果", "西瓜", "苹果", "苹果", "西瓜", "苹果", "香蕉", "苹果", "香蕉" };HashTable<string, int> ht;for (auto& e : arr){//auto ret = ht.Find(e);HashNode<string, int>* ret = ht.Find(e);if (ret){ret->_kv.second++;}else{ht.Insert(make_pair(e, 1));}}}//测试效率void TestHT3(){const size_t N = 10000;unordered_set<int> us;set<int> s;HashTable<int, int> ht;vector<int> v;v.reserve(N);srand(time(0));for (size_t i = 0; i < N; ++i){//v.push_back(rand()); // N比较大时,重复值比较多v.push_back(rand() + i); // 重复值相对少//v.push_back(i); // 没有重复,有序}// 21:15size_t begin1 = clock();for (auto e : v){s.insert(e);}size_t end1 = clock();cout << "set insert:" << end1 - begin1 << endl;size_t begin2 = clock();for (auto e : v){us.insert(e);}size_t end2 = clock();cout << "unordered_set insert:" << end2 - begin2 << endl;size_t begin10 = clock();for (auto e : v){ht.Insert(make_pair(e, e));}size_t end10 = clock();cout << "HashTbale insert:" << end10 - begin10 << endl << endl;size_t begin3 = clock();for (auto e : v){s.find(e);}size_t end3 = clock();cout << "set find:" << end3 - begin3 << endl;size_t begin4 = clock();for (auto e : v){us.find(e);}size_t end4 = clock();cout << "unordered_set find:" << end4 - begin4 << endl;size_t begin11 = clock();for (auto e : v){ht.Find(e);}size_t end11 = clock();cout << "HashTable find:" << end11 - begin11 << endl << endl;cout << "插入数据个数:" << us.size() << endl << endl;ht.Some();size_t begin5 = clock();for (auto e : v){s.erase(e);}size_t end5 = clock();cout << "set erase:" << end5 - begin5 << endl;size_t begin6 = clock();for (auto e : v){us.erase(e);}size_t end6 = clock();cout << "unordered_set erase:" << end6 - begin6 << endl;size_t begin12 = clock();for (auto e : v){ht.Erase(e);}size_t end12 = clock();cout << "HashTable Erase:" << end12 - begin12 << endl << endl;}//结果HashTable尽显优势
}

如上便是本期的所有内容了,如果喜欢并觉得有帮助的话,希望可以博个点赞+收藏+关注🌹🌹🌹❤️ 🧡 💛,学海无涯苦作舟,愿与君一起共勉成长

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/147347.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

锐捷练习-ospf虚链路及rip路由相互引入

一、相关知识补充 1、ospf基本概述 OSPF&#xff08;Open Shortest Path First&#xff09;是一种链路状态路由协议&#xff0c;用于在计算机网络中进行路由选择。它是内部网关协议&#xff08;IGP&#xff09;之一&#xff0c;常用于大规模企业网络或互联网服务提供商的网络…

Pytorch torch.dot、torch.mv、torch.mm、torch.norm的用法详解

torch.dot的用法&#xff1a; 使用numpy求点积&#xff0c;对于二维的且一个二维的维数为1 torch.mv的用法&#xff1a; torch.mm的用法 torch.norm 名词解释&#xff1a;L2范数也就是向量的模&#xff0c;L1范数就是各个元素的绝对值之和例如&#xff1a;

flutter仿支付宝余额宝年化收益折线图

绘制&#xff1a; 1.在pubspec.yaml中引入&#xff1a;fl_chart: 0.55.2 2.绘制&#xff1a; import package:jade/utils/JadeColors.dart; import package:util/easy_loading_util.dart; import package:fl_chart/fl_chart.dart; import package:flutter/material.dart; impo…

微服务实战系列之Sentinel

前言 微服务架构&#xff08;Microservice Architecture&#xff09;是一种架构概念&#xff0c;旨在通过将功能分解到各个离散的服务中以实现对解决方案的解耦。 近年来&#xff0c;微服务已赫然崛起于IT界&#xff0c;越来越多的程序员不得不向之靠拢。也正因为各行各业都愿为…

【入门篇】1.4 redis 客户端 之 Lettuce 详解

文章目录 1. 简介1. 什么是Lettuce2. Lettuce与其他Redis客户端的比较3. Lettuce的特性和优势 2. 安装和配置3. 连接池配置1. 什么是连接池2. Lettuce的连接池使用与配置3. 连接池配置项 4. 基本操作1. 如何创建Lettuce连接2. Lettuce的基本操作如增删改查3. Lettuce的事务操作…

【Python基础篇】运算符

博主&#xff1a;&#x1f44d;不许代码码上红 欢迎&#xff1a;&#x1f40b;点赞、收藏、关注、评论。 格言&#xff1a; 大鹏一日同风起&#xff0c;扶摇直上九万里。 文章目录 一 Python中的运算符二 算术运算符1 Python所有算术运算符的说明2 Python算术运算符的所有操作…

Mysql MMM

MMM概述 MMM(Master-Master replication manager for MvSQL&#xff0c;MySQL主主复制管理器&#xff09; 是一套支持双主故障切换和双主日常管理的脚本程序。 MMM 使用 Perl 语言开发&#xff0c;主要用来监控和管理MySQL Master-Master&#xff08;双主&#xff09;复制&…

YOLOv8改进 | DAttention (DAT)注意力机制实现极限涨点

论文地址&#xff1a; DAT论文地址 官方地址&#xff1a;官方代码的地址 代码地址&#xff1a;文末有修改了官方代码BUG的代码块复制粘贴即可 一、本文介绍 本文给大家带来的是YOLOv8改进DAT(Vision Transformer with Deformable Attention)的教程&#xff0c;其发布于2022…

uniapp 手动调用form表单submit事件

背景&#xff1a; UI把提交的按钮弄成了图片&#xff0c;之前的button不能用了。 <button form-type"submit">搜索</button> 实现&#xff1a; html&#xff1a; 通过 this.$refs.fd 获取到form的vue对象。手动调用里面的_onSubmit()方法。 methods:…

MySQL内部组件与日志详解

MySQL的内部组件结构 MySQL 可以分为 Server 层和存储引擎层两部分。 Server 层主要包括连接器、查询缓存、分析器、优化器、执行器等&#xff0c;涵盖 MySQL 的大多数核心服务功能&#xff0c;以及所有的内置函数&#xff08;如日期、时间、数学和加密函数等&#xff09;&am…

Spring面试题:(八)Spring事务

Spring事务概述 Spring事务基于数据库&#xff0c;基于数据库的事务封装了统一的接口。 编程式事务和声明式事务。 声明式事务分为Xml声明式或者注解声明式 实现事务相关的三个类 事务管理器 事务定义 事务状态 XML声明式事务的使用方法 导入坐标配置目标类配置切面 导入…

【LeetCode刷题-双指针】--259.较小的三数之和

259.较小的三数之和 方法&#xff1a;排序双指针 class Solution {public int threeSumSmaller(int[] nums, int target) {Arrays.sort(nums);int k 0;for(int i 0;i<nums.length;i){int start i 1,end nums.length - 1;while(start < end){int sum nums[start] …

FPGA UDP RGMII 千兆以太网(4)ARP ICMP UDP

1 以太网帧 1.1 1以太网帧格式 下图为以太网的帧格式: 前导码(Preamble):8 字节,连续 7 个 8’h55 加 1 个 8’hd5,表示一个帧的开始,用于双方 设备数据的同步。 目的 MAC 地址:6 字节,存放目的设备的物理地址,即 MAC 地址 源 MAC 地址:6 字节,存放发送端设备的…

受电诱骗快充取电芯片XSP08:PD+QC+华为+三星多种协议9V12V15V20V

目前市面上很多家的快充充电器&#xff0c;都有自己的私有快充协议&#xff0c;如PD协议、QC协议、华为快充协议、三星快充协议、OPPO快充协议等待&#xff0c;为了让它们都能输出快充电压&#xff0c;就需要在受电端也增加快充协议取电芯片XSP08&#xff0c;它可以和充电器通讯…

Java学习 10.Java-类和对象

一、面向对象的初步认知 1.1 什么是面向对象 面向对象是解决问题的一种思想&#xff0c;主要依靠对象之间的交互完成一件事情&#xff0c;用面向对象的思想来设计程序&#xff0c;更符合人们对事物的认知&#xff0c;对于大型程序的设计、拓展以及维护都非常友好 1.2 面向对…

C语言--数组的长度计算【详细解释】

一.数组的长度计算公式 我们都知道字符串有特定的函数strlen,而数组没有&#xff0c;&#xff08;虽然字符串也是一种特殊的数组&#xff09; 但是&#xff0c;类似于这样的数组&#xff1a; int arr[]{12,89,1,5,31,78,45,12,12,0,45,142,21,12}&#xff1b; 我们很难一眼…

决策树,sql考题,30个经典sql题目

大数据&#xff1a; 2022找工作是学历、能力和运气的超强结合体&#xff0c;遇到寒冬&#xff0c;大厂不招人&#xff0c;可能很多算法学生都得去找开发&#xff0c;测开 测开的话&#xff0c;你就得学数据库&#xff0c;sql&#xff0c;oracle&#xff0c;尤其sql要学&#x…

Maven:通过相对路径向jar中添加依赖项

问&#xff1a;我有一个专有的jar&#xff0c;我想把它作为一个依赖项添加到我的pom中。 但我不想把它添加到存储库中。原因是我希望常用的maven命令(如mvn compile等)能够开箱即用。(无需要求开发人员自己将其添加到某个存储库中)。 我希望jar在源代码控制中的第三方库中&…

五分钟,Docker安装kafka 3.5,kafka-map图形化管理工具

首先确保已经安装docker&#xff0c;如果是windows安装docker&#xff0c;可参考 wsl2安装docker 1、安装zk docker run -d --restartalways -e ALLOW_ANONYMOUS_LOGINyes --log-driver json-file --log-opt max-size100m --log-opt max-file2 --name zookeeper -p 2181:218…

【Proteus仿真】【51单片机】公交车报站系统

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真51单片机控制器&#xff0c;使用LCD12864显示模块、DS18B20温度传感器、DS1302时钟模块、按键、LED蜂鸣器、ULN2003、28BYJ48步进电机模块等。 主要功能&#xff1a; 系统运行后&…