DPN(Dual Path Network)网络结构详解

论文:Dual Path Networks
论文链接:https://arxiv.org/abs/1707.01629
代码:https://github.com/cypw/DPNs
MXNet框架下可训练模型的DPN代码:https://github.com/miraclewkf/DPN

我们知道ResNet,ResNeXt,DenseNet等网络在图像分类领域的效果显而易见,而DPN可以说是融合了ResNeXt和DenseNet的核心思想,这里为什么不说是融合了ResNet和DenseNet,因为作者也用了group操作,而ResNeXt和ResNet的主要区别就在于group操作。

那么DPN到底有哪些优点呢?可以看以下两点:
1、关于模型复杂度,作者的原文是这么说的:The DPN-92 costs about 15% fewer parameters than ResNeXt-101 (32 4d), while the DPN-98 costs about 26% fewer parameters than ResNeXt-101 (64 4d).
2、关于计算复杂度,作者的原文是这么说的:DPN-92 consumes about 19% less FLOPs than ResNeXt-101(32 4d), and the DPN-98 consumes about 25% less FLOPs than ResNeXt-101(64 4d).
在这里插入图片描述

先放上网络结构Table1,有一个直观的印象。
在这里插入图片描述
其实DPN和ResNeXt(ResNet)的结构很相似。最开始一个7*7的卷积层和max pooling层,然后是4个stage,每个stage包含几个sub-stage(后面会介绍),再接着是一个global average pooling和全连接层,最后是softmax层。重点在于stage里面的内容,也是DPN算法的核心。

因为DPN算法简单讲就是将ResNeXt和DenseNet融合成一个网络,因此在介绍DPN的每个stage里面的结构之前,先简单过一下ResNet(ResNeXt和ResNet的子结构在宏观上是一样的)和DenseNet的核心内容。

下图中的(a)是ResNet的某个stage中的一部分。(a)的左边竖着的大矩形框表示输入输出内容,对一个输入x,分两条线走,一条线还是x本身,另一条线是x经过1×1卷积,3×3卷积,1×1卷积(这三个卷积层的组合又称作bottleneck),然后把这两条线的输出做一个element-wise addition,也就是对应值相加,就是(a)中的加号,得到的结果又变成下一个同样模块的输入,几个这样的模块组合在一起就成了一个stage(比如Table1中的conv3)。

(b)表示DenseNet的核心内容。(b)的左边竖着的多边形框表示输入输出内容,对输入x,只走一条线,那就是经过几层卷积后和x做一个通道的合并(cancat),得到的结果又成了下一个小模块的输入,这样每一个小模块的输入都在不断累加,举个例子:第二个小模块的输入包含第一个小模块的输出和第一个小模块的输入,以此类推。
在这里插入图片描述
DPN是怎么做呢?简单讲就是将Residual Network 和 Densely Connected Network融合在一起。下图中的(d)和(e)是一个意思,所以就按(e)来讲吧。(e)中竖着的矩形框和多边形框的含义和前面一样。具体在代码中,对于一个输入x(分两种情况:一种是如果x是整个网络第一个卷积层的输出或者某个stage的输出,会对x做一个卷积,然后做slice,也就是将输出按照channel分成两部分:data_o1和data_o2,可以理解为(e)中竖着的矩形框和多边形框;另一种是在stage内部的某个sub-stage的输出,输出本身就包含两部分:data_o1和data_o2),走两条线,一条线是保持data_o1和data_o2本身,和ResNet类似;另一条线是对x做1×1卷积,3×3卷积,1×1卷积,然后再做slice得到两部分c1和c2,最后c1和data_o1做相加(element-wise addition)得到sum,类似ResNet中的操作;c2和data_o2做通道合并(concat)得到dense(这样下一层就可以得到这一层的输出和这一层的输入),也就是最后返回两个值:sum和dense。
以上这个过程就是DPN中 一个stage中的一个sub-stage。有两个细节,一个是3×3的卷积采用的是group操作,类似ResNeXt,另一个是在每个sub-stage的首尾都会对dense部分做一个通道的加宽操作。
在这里插入图片描述
作者在MXNet框架下实现了DPN算法,具体的symbol可以看:https://github.com/cypw/DPNs/tree/master/settings,介绍得非常详细也很容易读懂。

实验结果:
Table2是在ImageNet-1k数据集上和目前最好的几个算法的对比:ResNet,ResNeXt,DenseNet。可以看出在模型大小,GFLOP和准确率方面DPN网络都更胜一筹。不过在这个对比中好像DenseNet的表现不如DenseNet那篇论文介绍的那么喜人,可能是因为DenseNet的需要更多的训练技巧。
在这里插入图片描述
Figure3是关于训练速度和存储空间的对比。现在对于模型的改进,可能准确率方面的提升已经很难作为明显的创新点,因为幅度都不大,因此大部分还是在模型大小和计算复杂度上优化,同时只要准确率还能提高一点就算进步了。
在这里插入图片描述

总结:
作者提出的DPN网络可以理解为在ResNeXt的基础上引入了DenseNet的核心内容,使得模型对特征的利用更加充分。原理方面并不难理解,而且在跑代码过程中也比较容易训练,同时文章中的实验也表明模型在分类和检测的数据集上都有不错的效果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/14711.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android启动速度优化

本节主要内容:了解APP启动流程、启动状态、查看启动时间、CPU Profile定位启动耗时代码、StrictMode严苛模式检测不合理写法、解决启动黑白屏问题。 一、APP启动流程 ①用户点击桌面App图标,Launcher进程采用Binder IPC向system_server进程发起startAc…

DHCP部署与安全详解

文章目录 一、DHCP是什么?二、DHCP相关概念三、DHCP优点四、DHCP原理1. 客户机发送DHCP Discovery广播包(发现谁是DHCP服务器)2. 服务器响应DHCP Offer广播包3. 客户机发送DHCP Request广播包4. 服务器发送DHCP ACK广播包 五、DHCP续约六、部…

lc209.长度最小的子数组

暴力破解:二次for循环遍历num[i]...num[j],记录满足条件的最小长度 前缀和二分:前缀和降低计算num[i]...num[j]的时间复杂度 对前缀和数组中的每个数进行遍历,找到距离这个数满足条件的最小长度 前缀和数组单调递增,此…

【JAVA】java中的逻辑控制

作者主页:paper jie的博客 本文作者:大家好,我是paper jie,感谢你阅读本文,欢迎一建三连哦。 本文录入于《JAVASE语法系列》专栏,本专栏是针对于大学生,编程小白精心打造的。笔者用重金(时间和精…

不同情境下沟通有哪些可用的工具箱?

在不同情境下,沟通的工具箱可以包括以下几个方面: 面对面交流:面对面交流是最直接和有效的沟通方式。可以通过面对面的会议、面谈或小组讨论等方式进行沟通。面对面交流可以更好地传递情感和非语言信息,有助于建立信任和理解。 …

SQL-每日一题【620.有趣的电影】

题目 某城市开了一家新的电影院,吸引了很多人过来看电影。该电影院特别注意用户体验,专门有个 LED显示板做电影推荐,上面公布着影评和相关电影描述。 作为该电影院的信息部主管,您需要编写一个 SQL查询,找出所有影片…

谈一谈缓存穿透,击穿,雪崩

缓存穿透 缓存穿透是指在使用缓存系统时,频繁查询一个不存在于缓存中的数据,导致这个查询每次都要通过缓存层去查询数据源,无法从缓存中获得结果。这种情况下,大量的请求会直接穿透缓存层,直接访问数据源,…

【前端知识】React 基础巩固(四十二)——React Hooks的介绍

React 基础巩固(四十二)——React Hooks的介绍 一、为什么需要Hook? Hook 是 React 16.8 的新增特性,它可以让我们在不编写class的情况下使用state以及其他的React特性(比如生命周期)。 class组件 VS 函数式组件: class的优势…

操作系统4

文件管理 文件的逻辑结构 文件的目录 文件的物理结构 文件存储空间管理 文件的基本操作

7.28 作业 QT

手动完成服务器的实现&#xff0c;并具体程序要注释清楚: widget.h: #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTcpServer> //服务器类 #include <QTcpSocket> //客户端类 #include <QMessageBox> //对话框类 #include …

[数据集][目标检测]城市道路井盖破损丢失目标检测1377张

数据集制作单位&#xff1a;未来自主研究中心(FIRC) 数据集格式&#xff1a;Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件&#xff0c;仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数)&#xff1a;1377 标注数量(xml文件个数)&#xff1a;1377 标注类别数&a…

MOS管的体二极管是怎么形成的

一般MOS管的源极和漏极之间会存在体二极管&#xff0c;对于N沟道的MOS管&#xff0c;体二极管由源极指向漏极。 对于PMOS管&#xff0c;体二极管由漏极指向源极&#xff0c;那么MOS管为什么会有这个体二极管呢&#xff1f; 我们看到这个N沟道MOS管的结构&#xff0c;源极和漏极…

一起学算法(计算排序篇)

概念&#xff1a; 计数排序&#xff08;Counting sort&#xff09;是一个非基于比较稳定的线性时间的排序算法 非基于比较&#xff1a;之前学的排序都是通过比较数据的大小来实现有序的&#xff0c;比如希尔排序等&#xff0c;而计数排序不需要比较数据的大小而进行排序&…

2023年Q2京东小家电市场数据分析(京东数据运营)

伴随人们对生活品质追求的提高&#xff0c;以及拥有新兴消费理念的年轻人逐渐成为消费主力&#xff0c;功能新潮、外观精致的小家电经常在电商平台销售榜单里“榜上有名”。本期我们便一起来分析Q2京东小家电市场中&#xff0c;一些较为热门的精致生活小电的行业大盘变动情况。…

大数据处理框架-Spark DataFrame构造、join和null空值填充

1、Spark DataFrame介绍 DataFrame是Spark SQL中的一个概念&#xff0c;它是一个分布式的数据集合&#xff0c;可以看作是一张表。DataFrame与RDD的主要区别在于&#xff0c;前者带有schema元信息&#xff0c;即DataFrame所表示的二维表数据集的每一列都带有名称和类型。 2、构…

一文讲清楚地图地理坐标系

前言 我最近在做一个和地图有关的项目&#xff0c;这里本人地图采用的是mapbox&#xff0c;其中涉及一个功能需要根据用户输入的地点直接定位到地图上的对应的位置&#xff0c;本人开始想的是直接调用百度的接口根据地名直接获取坐标&#xff0c;发现在地图上的位置有偏移不够…

WIZnet W5500-EVB-Pico DHCP 配置教程(三)

DHCP协议介绍 什么是DHCP&#xff1f; 动态主机配置协议DHCP&#xff08;Dynamic Host Configuration Protocol&#xff09;是一种网络管理协议&#xff0c;用于集中对用户IP地址进行动态管理和配置。 DHCP于1993年10月成为标准协议&#xff0c;其前身是BOOTP协议。DHCP协议由R…

Go语言进阶 + 依赖管理

依赖配置 - version开始&#xff0c;就开始很难听懂了&#xff0c;需要结合很多课后配套资料查阅很多文档和网站....然而好像没有那么多时间&#xff0c;一天给3小时学Go真的顶天了.....还有算法和Linux的Mysql... 这几天学Go已经把算法给挤掉了.....下步要权衡一下&#xff0c…

手写SpringBoot模拟核心流程

首先&#xff0c;SpringBoot是基于的Spring&#xff0c;所以我们要依赖Spring&#xff0c;然后我希望我们模拟出来的SpringBoot也支持Spring MVC的那一套功能&#xff0c;所以也要依赖Spring MVC&#xff0c;包括Tomcat等&#xff0c;所以在SpringBoot模块中要添加以下依赖&…

在docker中没有vi如何修改docker中的文件

今天在做学成在线的项目&#xff0c;遇到了一个问题&#xff0c;就是死活登不上xxl-job&#xff0c;按照之前遇到的nacos的问题&#xff0c;我怀疑很大概率是和当时的ip设置有关&#xff0c;不知道nacos的ip怎么修改的同学&#xff0c;可以看看这篇文章&#xff1a;关于docker中…