基于静电放电算法优化概率神经网络PNN的分类预测 - 附代码

基于静电放电算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于静电放电算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于静电放电优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用静电放电算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于静电放电优化的PNN网络

静电放电算法原理请参考:https://blog.csdn.net/u011835903/article/details/118755197

利用静电放电算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

静电放电参数设置如下:

%% 静电放电参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述

从结果来看,静电放电-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/146594.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vue中给对象添加新属性时,界面不刷新怎么办?

文章目录 前言直接添加属性的问题原理分析解决方案总结后言 前言 hello world欢迎来到前端的新世界 😜当前文章系列专栏:vue.js 🐱‍👓博主在前端领域还有很多知识和技术需要掌握,正在不断努力填补技术短板。(如果出现…

微信个人号api

简要描述: 登录E云平台 请求URL: http://域名地址/member/login域名地址开发者账号密码:后台系统自助开通 请求方式: POST 请求头Headers: Content-Type:application/json 参数: 参数名必选类型说…

​如何使用ArcGIS Pro制作渐变河流效果

对于面要素的河流水系,制作渐变效果方法比较简单,如果是线要素的河流有办法制作渐变效果吗,答案是肯定的,这里为大家介绍一下制作方法,希望能对你有所帮助。 数据来源 本教程所使用的数据是从水经微图中下载的水系数…

quarkus的一些注解1

path 用于指定一个类或者方法的URL路径前缀。 Inject 将一个依赖注入到一个类或方法中 Get 用于指定一个处理HTTP GET请求 Produce 注解用于指定一个方法返回的内容类型。例如,Produces(MediaType.TEXT_PLAIN) 表示该方法返回一个纯文本类型的内容 QuarkusIn…

利用WebSocket +MQ发送紧急订单消息,并在客户端收到消息的用户的页面自动刷新列表

背景:在原有通知公告的基础上,把通知公共的推送服务修改为其他业务收到紧急订单发送公告到消息队列MQ,然后在js中创建一个socket去监听公告,收到公告后刷新所有在订单页面的用户的页面列表(重点就是用户在收到紧急订单…

《网络协议》07. 其他协议

title: 《网络协议》07. 其他协议 date: 2022-10-07 18:24:02 updated: 2023-11-15 08:00:52 categories: 学习记录:网络协议 excerpt: IPv6、WebSocket、WebService(SOAP,WSDL)、HTTPDNS、FTP、邮件(SMTP,…

基于单片机的温度控制器系统设计

**单片机设计介绍, 基于单片机的温度控制器系统设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机的温度控制器系统是一种利用单片机来检测环境温度并控制温度的系统。它通常由以下几个部分组成&#xff…

CSDN每日一题学习训练——Python版(新浪微博热门话题、Z 字形变换)

版本说明 当前版本号[20231117]。 版本修改说明20231117初版 目录 文章目录 版本说明目录新浪微博热门话题题目解题思路代码思路参考代码 Z 字形变换题目解题思路代码思路参考代码 新浪微博热门话题 题目 ​ 新浪微博可以在发言中嵌入“话题”,即将发言中的话题…

Spring 设计模式-简洁版

Java 中包括以下设计模式: 其中Spring 用到的设计模式 1.简单工厂-BeanFactory 2.工厂方法FactoryBean 3.单例模式Bean实例 4.适配器模式SpringMVC中的HandlerAdatper 5.装饰器模式BeanWrapper 6.代理模式_AOP底层 7.观察者模式-spring的事件监听 8.策略横式exclud…

C#委托初步

委托可以很方便地实现对一个对象方法的扩展 PhotoFilters是一个类,有3个人方法: public void ApplyBrightness(Photo photo){Console.WriteLine("亮度增加");}public void ApplyContrast(Photo photo){Console.WriteLine("对比度增加&q…

【限时免费】20天拿下华为OD笔试之 【不定滑窗】2023B-字符串摘要【欧弟算法】全网注释最详细分类最全的华为OD真题题解

文章目录 题目描述与示例题目描述输入描述输出描述示例一输入输出说明 示例二输入输出说明 解题思路滑窗三问滑窗三答 代码PythonJavaC时空复杂度 华为OD算法/大厂面试高频题算法练习冲刺训练 题目描述与示例 题目描述 给定一个字符串的摘要算法,请输出给定字符串…

基于人工电场算法优化概率神经网络PNN的分类预测 - 附代码

基于人工电场算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于人工电场算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于人工电场优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神…

WPF如何实现应用程序托盘

在WPF中实现应用程序托盘图标和菜单功能通常需要使用System.Windows.Forms.NotifyIcon类,因为WPF本身并没有直接提供这样的控件。为了使用NotifyIcon,你需要添加对System.Windows.Forms的引用。以下是如何实现的步骤: 1. 添加对 System.Wind…

jedis连接redis

package com.wsd;import redis.clients.jedis.Jedis;import java.io.IOException; import java.io.InputStream; import java.util.HashMap; import java.util.Map; import java.util.Properties;public class Redis {public static void main(String[] args) {//读取properti…

Windows11 python3.12 安装pyqt6 pyqt6-tools

Windows11 python3.12 安装pyqt6比较容易,但pyqt6-tools一直安装不上去。出错信息如下: (venv) PS D:\python_project\pyqt6> pip install pyqt6-tools Collecting pyqt6-toolsUsing cached pyqt6_tools-6.4.2.3.3-py3-none-any.whl (29 kB) Collec…

思源笔记的优缺点 vs Obsidian vs Logseq vs Trilium

新用户对思源笔记的印象。(PS:两年前我试用过思源笔记,被卡顿劝退了) 优点 相比obsidian, 可在文档树拖拽 拖拽调整笔记顺序 拖拽使一个笔记成为另一个笔记的子笔记,树状结构 设置-文档树,默认…

homeassiant主题

下载主题 https://github.com/maartenpaauw/home-assistant-community-themes.git 使用file editor到homeassiant路径下,新建文件夹themes文件夹,用terminal新建也可以。 使用file editor上传文件 使用Terminal解压 mkdir themes unzip home-assistan…

Redis(消息队列Stream)

Stream是一个轻量级的消息队列。 Redis中Stream的作用是提供一种高效的消息传递机制,允许多个消费者并行地消费消息,并且不会重复消费已经处理过的消息。它可以用于实现分布式任务队列、日志收集、实时数据处理等场景。Redis中的Stream支持多个消费者组…

RabbitMQ 消息丢失解决 (高级发布确认、消息回退与重发、备份交换机)

目录 一、发布确认SpringBoot版本 确认机制图例: 代码实战: 代码架构图: 1.1交换机的发布确认 添加配置类 消息消费者 消息生产者发布消息后的回调接口 测试: 1.2回退消息并重发(队列的发布确认) …

windows 11 本地运行ER-NeRF及pytorch3D安装

ER-NeRF本地运行只要梳理好依赖版本,运行起来就很顺畅 conda create -n ernerf python3.10 创建本项目虚拟环境conda install pytorch1.12.1 torchvision0.13.1 cudatoolkit11.3 -c pytorch 若windows有多个版本的cuda,需要在环境变量中切换至cuda 11.3&…