在Rust编程中使用泛型

1.摘要

Rust中的泛型可以让我们为像函数签名或结构体这样的项创建定义, 这样它们就可以用于多种不同的具体数据类型。下面的内容将涉及泛型定义函数、结构体、枚举和方法, 还将讨论泛型如何影响代码性能。

2.在函数定义中使用泛型

当使用泛型定义函数时,本来在函数签名中指定参数和返回值的类型的地方,会改用泛型来表示。采用这种技术,使得代码适应性更强,从而为函数的调用者提供更多的功能,同时也避免了代码的重复。

看下面的代码例子, 定义了两个函数, 功能都差不多,作用是分别寻找slice中最大的i32和slice中最大的char, 只是数据类型不同。

fn largest_i32(list: &[i32]) -> &i32 {let mut largest = &list[0];
​for item in list {if item > largest {largest = item;}}
​largest
}
​
fn largest_char(list: &[char]) -> &char {let mut largest = &list[0];
​for item in list {if item > largest {largest = item;}}
​largest
}
​
fn main() {let number_list = vec![34, 50, 25, 100, 65];
​let result = largest_i32(&number_list);println!("The largest number is {}", result);
​let char_list = vec!['y', 'm', 'a', 'q'];
​let result = largest_char(&char_list);println!("The largest char is {}", result);
}

编译一下代码, 输出如下:

我们现在需要定义一个新函数, 引进泛型参数来消除这种因数据类型不同而导致的函数重复定义。为了参数化这个新函数中的这些类型,我们需要为类型参数命名,道理和给函数的形参起名一样。任何标识符都可以作为类型参数的名字。这里选用 T,因为传统上来说,Rust 的类型参数名字都比较短,通常仅为一个字母,同时,Rust 类型名的命名规范是首字母大写驼峰式命名法(UpperCamelCase)。T 作为 “type” 的缩写是大部分 Rust 程序员的首选。

如果要在函数体中使用参数,就必须在函数签名中声明它的名字,好让编译器知道这个名字指代的是什么。同理,当在函数签名中使用一个类型参数时,必须在使用它之前就声明它。为了定义泛型版本的 largest 函数,类型参数声明位于函数名称与参数列表中间的尖括号 <> 中,像这样:

fn largest<T>(list: &[T]) -> &T {

可以这样理解这个定义:函数 largest 有泛型类型 T。它有个参数 list,其类型是元素为 T 的 slice。largest 函数会返回一个与 T 相同类型的引用。

按照这个思想, 我们将代码改造如下:

fn largest<T>(list: &[T]) -> &T {let mut largest = &list[0];
​for item in list {if item > largest {largest = item;}}
​largest
}
​
fn main() {let number_list = vec![34, 50, 25, 100, 65];
​let result = largest(&number_list);println!("The largest number is {}", result);
​let char_list = vec!['y', 'm', 'a', 'q'];
​let result = largest(&char_list);println!("The largest char is {}", result);
}

一切似乎很顺利, 尝试编译这段代码, 编译器结果如下:

这次编译没有通过的原因Rust编译器用绿色标识出来了, 缺少一个: std:cmp::PartialOrd, 先暂且认为这个是Rust标准库要求的东西, 加上重新编译一下试试:

fn largest<T: std::cmp::PartialOrd>(list: &[T]) -> &T {let mut largest = &list[0];
​for item in list {if item > largest {largest = item;}}
​largest
}

重新编译结果如下:

我们在代码中下了一个断点, 能够执行到此处说明代码已经没有问题。实际上上面这个错误表明 largest 的函数体不能适用于 T 的所有可能的类型。因为在函数体需要比较 T 类型的值,不过它只能用于我们知道如何排序的类型。为了开启比较功能,标准库中定义的 std::cmp::PartialOrd trait 可以实现类型的比较功能, 我们限制 T 只对实现了 PartialOrd 的类型有效后代码就可以编译了,因为标准库为 i32char 实现了 PartialOrd

3.在结构体中使用泛型

同样也可以用 <> 语法来定义结构体,它包含一个或多个泛型参数类型字段。下面的代码片段定义了一个可以存放任何类型的 xy 坐标值的结构体 Point

struct Point<T> {x: T,y: T,
}
​
fn main() {let integer = Point { x: 5, y: 10 };let float = Point { x: 1.0, y: 4.0 };
}

其语法类似于函数定义中使用泛型。首先,必须在结构体名称后面的尖括号中声明泛型参数的名称。接着在结构体定义中可以指定具体数据类型的位置使用泛型类型。

注意 Point<T> 的定义中只使用了一个泛型类型,这个定义表明结构体 Point<T> 对于一些类型 T 是泛型的,而且字段 xy 都是 相同类型的,无论它具体是何类型。

如果尝试创建一个有不同类型值的 Point<T> 的实例, 看下面的代码:

struct Point<T> {x: T,y: T,
}
​
fn main() {let wont_work = Point { x: 5, y: 4.0 };
}

在这个例子中,当把整型值 5 赋值给 x 时,就告诉了编译器这个 Point<T> 实例中的泛型 T 全是整型。接着指定 y 为浮点值 4.0,因为它y被定义为与 x 相同类型,所以将会得到一个像这样的类型不匹配错误:

如果想要定义一个 xy 可以有不同类型且仍然是泛型的 Point 结构体,我们可以使用多个泛型类型参数。修改 Point 的定义为拥有两个泛型类型 TU。其中字段 xT 类型的,而字段 yU 类型的:

struct Point<T, U> {x: T,y: U,
}
​
fn main() {let both_integer = Point { x: 5, y: 10 };let both_float = Point { x: 1.0, y: 4.0 };let integer_and_float = Point { x: 5, y: 4.0 };
}

现在所有这些 Point 实例都合法了!我们可以在定义中使用任意多的泛型类型参数,不过太多的话,代码将难以阅读和理解。当你发现代码中需要很多泛型时,这可能表明你的代码需要重构分解成更小的结构。

4.枚举中使用泛型

和结构体类似,枚举也可以在成员中存放泛型数据类型。例如:

enum Option<T> {Some(T),None,
}

Option<T> 是一个拥有泛型 T 的枚举,它有两个成员:Some,它存放了一个类型 T 的值,和不存在任何值的None。通过 Option<T> 枚举可以表达有一个可能的值的抽象概念,同时因为 Option<T> 是泛型的,无论这个可能的值是什么类型都可以使用这个抽象。

枚举也可以拥有多个泛型类型, 例如:

enum Result<T, E> {Ok(T),Err(E),
}

Result 枚举有两个泛型类型,TEResult 有两个成员:Ok,它存放一个类型 T 的值,而 Err 则存放一个类型 E 的值。这个定义使得 Result 枚举能很方便的表达任何可能成功(返回 T 类型的值)也可能失败(返回 E 类型的值)的操作。

总结:当意识到代码中定义了多个结构体或枚举,它们不一样的地方只是其中的值的类型的时候,不妨通过泛型类型来避免重复。

5.方法定义中的泛型

在为结构体和枚举实现方法时, 一样也可以用泛型。看下面的代码:

struct Point<T> {x: T,y: T,
}
​
impl<T> Point<T> {fn x(&self) -> &T {&self.x}
}
​
fn main() {let p = Point { x: 5, y: 10 };
​println!("p.x = {}", p.x());
}

这里在 Point<T> 上定义了一个叫做 x 的方法来返回字段 x 中数据的引用。注意必须在 impl 后面声明 T,这样就可以在 Point<T> 上实现的方法中使用 T 了。通过在 impl 之后声明泛型 T,Rust 就知道 Point 的尖括号中的类型是泛型而不是具体类型。我们可以为泛型参数选择一个与结构体定义中声明的泛型参数所不同的名称,不过依照惯例使用了相同的名称。impl 中编写的方法声明了泛型类型可以定位为任何类型的实例,不管最终替换泛型类型的是何具体类型。

定义方法时也可以为泛型指定限制(constraint)。例如,可以选择为 Point<f32> 实例实现方法,而不是为泛型 Point 实例。代码如下:

impl Point<f32> {fn distance_from_origin(&self) -> f32 {(self.x.powi(2) + self.y.powi(2)).sqrt()}
}

这段代码意味着 Point<f32> 类型会有一个方法 distance_from_origin,而其他 T 不是 f32 类型的 Point<T> 实例则没有定义此方法。这个方法计算点实例与坐标 (0.0, 0.0) 之间的距离,并使用了只能用于浮点型的数学运算符。

结构体定义中的泛型类型参数并不总是与结构体方法签名中使用的泛型是同一类型。看下面的代码:

struct Point<X1, Y1> {x: X1,y: Y1,
}
​
impl<X1, Y1> Point<X1, Y1> {fn mixup<X2, Y2>(self, other: Point<X2, Y2>) -> Point<X1, Y2> {Point {x: self.x,y: other.y,}}
}
​
fn main() {let p1 = Point { x: 5, y: 10.4 };let p2 = Point { x: "Hello", y: 'c' };
​let p3 = p1.mixup(p2);
​println!("p3.x = {}, p3.y = {}", p3.x, p3.y);
}

在上面的代码中, Point 结构体使用了泛型类型 X1Y1,为 mixup 方法签名使用了 X2Y2 来使得示例更加清楚。这个方法用 selfPoint 类型的 x 值(类型 X1)和参数的 Point 类型的 y 值(类型 Y2)来创建一个新 Point 类型的实例

main 函数中,定义了一个有 i32 类型的 x(其值为 5)和 f64y(其值为 10.4)的 Pointp2 则是一个有着字符串 slice 类型的 x(其值为 "Hello")和 char 类型的 y(其值为c)的 Point。在 p1 上以 p2 作为参数调用 mixup 会返回一个 p3,它会有一个 i32 类型的 x,因为 x 来自 p1,并拥有一个 char 类型的 y,因为 y 来自 p2println! 会打印出 p3.x = 5, p3.y = c

这个例子的目的是展示一些泛型通过 impl 声明而另一些通过方法定义声明的情况。这里泛型参数 X1Y1 声明于 impl 之后,因为它们与结构体定义相对应。而泛型参数 X2Y2 声明于 fn mixup 之后,因为它们只是相对于方法本身的。

6.泛型代码性能

不用担心使用泛型会比使用具体类型的代码性能低。

Rust 通过在编译时进行泛型代码的 单态化monomorphization)来保证效率。单态化是一个通过填充编译时使用的具体类型,将通用代码转换为特定代码的过程。

在这个过程中,编译器寻找所有泛型代码被调用的位置并使用泛型代码针对具体类型生成代码。

下面看看这个怎样用于标准库中的 Option 枚举:

let integer = Some(5);
let float = Some(5.0);

当 Rust 编译这些代码的时候,它会进行单态化。编译器会读取传递给 Option<T> 的值并发现有两种 Option<T>:一个对应 i32 另一个对应 f64。为此,它会将泛型定义 Option<T> 展开为两个针对 i32f64 的定义,接着将泛型定义替换为这两个具体的定义。

编译器生成的单态化版本的代码看起来像这样(编译器会使用不同于如下假想的名字):

enum Option_i32 {Some(i32),None,
}
​
enum Option_f64 {Some(f64),None,
}
​
fn main() {let integer = Option_i32::Some(5);let float = Option_f64::Some(5.0);
}

泛型 Option<T> 被编译器替换为了具体的定义。因为 Rust 会将每种情况下的泛型代码编译为具体类型,使用泛型没有运行时开销。当代码运行时,它的执行效率就跟好像手写每个具体定义的重复代码一样。这个单态化过程正是 Rust 泛型在运行时极其高效的原因。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/146492.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Aerial for Mac: 沉浸在高清鸟瞰的世界,让你的屏幕焕发新生

你是否已经厌倦了那些平淡无奇的屏保程序&#xff1f;是否希望你的Mac屏幕能更生动、更有趣&#xff1f;如果你对此抱有强烈的期待&#xff0c;那么Aerial for Mac绝对会是你期待已久的解决方案。 Aerial for Mac是一款独具特色的高清屏保程序&#xff0c;它以鸟瞰的视角带你领…

【Android】带下划线的TextView

序言 我们有时候需要一个类似这样的显示&#xff0c;上面是文字&#xff0c;下面是一条线 这样的显示效果是TextView实现不了的&#xff0c;需要我们自己进行修改一下。 实现 创建一个UnderlineTextView&#xff0c;继承系统的TextView class UnderlineTextView(mContext…

[nlp] grad norm先降后升再降

grad norm先降后升再降正常嘛 在深度学习中&#xff0c;梯度的范数通常被用来衡量模型参数的更新程度&#xff0c;也就是模型的学习进度。在训练初期&#xff0c;由于模型参数的初始值比较随机&#xff0c;梯度的范数可能会比较大&#xff0c;这是正常现象。随着模型的训练&…

安装 eslint 配置指南 及 遇到的一些问题记录

前端eslint配置指南 背景 当前前端项目风格混乱&#xff0c;每个人有自己的开发习惯&#xff0c;有自己的格式化习惯&#xff0c;不便于项目的风格统一&#xff0c;不利于代码维护有的项目eslint没有用起来&#xff0c;没有起到规范代码的作用&#xff0c;导致出现一些基础代码…

RT-DETR优化策略:轻量级Backbone改进 | 高效模型 (Efficient MOdel, EMO),现代倒残差移动模块设计|ICCV2023

🚀🚀🚀本文改进:面向移动端的轻量化网络模型——EMO,它能够以相对较低的参数和 FLOPs 超越了基于 CNN/Transformer 的 SOTA 模型,支持四个版本EMO_1M, EMO_2M, EMO_5M, EMO_6M,参数量如下,相对于自带的rtdetr-l、rtdetr-x有很大提升 layersparametersgradientsEMO_1…

MySQL-事务

什么是事务 事务是一组操作的集合&#xff0c;它是一个不可分割的工作单位&#xff0c;事务会把所有的操作作为一个整体一起向系统提交或撤销操作请求&#xff0c;即这些操作要么同时成功&#xff0c;要么同时失败。 事务的特性 (ACID) 原子性(Atomicity)&#xff1a;事务是不…

C_11微机原理

一、单项选择题&#xff08;本大题共 15 小题&#xff0c;每小题 3分&#xff0c;共45分。在每小题给出的四个备选项中&#xff0c;选出一个正确的答案。&#xff09; .EXE 文件产生在&#xff08;&#xff09;之后。 A.汇编 B. 编辑 C.用软件转换 D.连接 2,十进制-61的8位二进…

创芯科技USB_CAN【库文件】

只用到【只收】【只发】功能 23.11.18 using help; //using Models; using System; using System.Collections.Generic; using System.Linq; using System.Net.NetworkInformation; using System.Runtime.CompilerServices; using System.Runtime.InteropServices; using Sys…

MybatisPlus学习

一.快速入门 1.相关数据库创建 CREATE TABLE USER(id BIGINT(20) NOT NULL COMMENT 主键ID,NAME VARCHAR(30) NULL DEFAULT NULL COMMENT 姓名,age INT(11) NULL DEFAULT NULL COMMENT 年龄,email VARCHAR(50) NULL DEFAULT NULL COMMENT 邮箱,PRIMARY KEY (id));​​INSERT I…

后端返回 date 时间日期格式为 UTC 格式字符串,形如 2022-08-11T10:50:31.050+00:00前端如何修改为yyyy-mm-dd

在不指定任何特殊配置的情况下&#xff0c;返回的 date 类型的字段会自动转成 UTC 格式字符串&#xff0c;形如 2022-08-11T10:50:31.05000:00。 前端如何处理&#xff1f; vue举例 utils 下新建 mixins.js文件 // minins.js文件 import Vue from "vue"; import {…

MidJourney笔记(1)-入门

注册 MidJourney注册和使用方式,有点特别。在介绍注册之前,需要给大家先介绍Discord。 Discord是一家游戏聊天应用与社区,在国内用的人相对比较少,在国外用得比较多。 那MidJourney和Discord有什么关系呢? MidJourney是搭建在Discord上的一个人工智能程序,通过在Discord添…

《洛谷深入浅出基础篇》——P3405 citis and state ——哈希表

上链接&#xff1a;P3405 [USACO16DEC] Cities and States S - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)https://www.luogu.com.cn/problem/P3405 上题干&#xff1a; 题目描述 Farmer John 有若干头奶牛。为了训练奶牛们的智力&#xff0c;Farmer John 在谷仓的墙上放了一…

Spring对事务的实现

Spring对事务的支持 事务概述事务的四个处理过程事务的四个特性 引入事务场景Spring实现事务的两种方式声明式事务之注解实现方式 事务概述 在一个业务流程当中&#xff0c;通常需要多条DML&#xff08;insert delete update&#xff09;语句共同联合才能完成&#xff0c;这多…

若依启动步骤

1.创建数据库 2.启动redis 3.改后端的数据库连接配置 4.配置redis redis的地址&#xff1a;cmd中ipconfig命令查看 6.启动后端&#xff1a;如下 7.启动前端ruoyi-ui中 先运行npm install&#xff0c;再npm run dev。项目就启动成功了。 用户名&#xff1a;admin 密码&#x…

【2022改良版】学法减分助手PRO小程序源码

【2022改良版】学法减分助手PRO小程序源码 &#xff0c;交管推出个学法减分&#xff0c;每个驾驶员可以把被扣的6分&#xff0c;以看视频答题的形式学习回来&#xff0c;然后答题这个一共二十道题每道题60秒&#xff0c; 有好多人不会&#xff0c;用咱们的小程序就可以模拟练习…

计算机视觉:驾驶员疲劳检测

目录 前言 关键点讲解 代码详解 结果展示 改进方向&#xff08;打哈欠检测疲劳方法&#xff09; 改进方向&#xff08;点头检测疲劳&#xff09; GUI界面设计展示 前言 上次博客我们讲到了如何定位人脸&#xff0c;并且在人脸上进行关键点定位。其中包括5点定位和68点定…

交换机的工作原理

局域网交换技术是数据链路层上的技术&#xff0c;就是转发数据帧。在数据通信中&#xff0c;所有交换设备都执行两个基本操作&#xff1a; 交换数据帧生成并维护交换地址表 交换数据帧 交换机根据数据帧的MAC地址&#xff08;物理地址&#xff09;进行数据帧的转发操作。交换…

Stable Diffusion 入门

Stable Diffusion 入门 简介 稳定扩散&#xff08;Stable Diffusion&#xff09;是一种用于解决基于图论的问题的算法。在许多实际场景中&#xff0c;我们需要对图中的节点进行扩散&#xff0c;以便发现节点之间的关联性和信息传播路径。稳定扩散算法通过模拟节点之间的信息传…

二、程序员指南:数据平面开发套件

MEMPOOL库 内存池是固定大小对象的分配器。在DPDK中&#xff0c;它由名称标识&#xff0c;并使用环形结构来存储空闲对象。它提供一些其他可选服务&#xff0c;例如每个核心的对象缓存和一个对齐辅助工具&#xff0c;以确保对象填充以将它们均匀分布在所有DRAM或DDR3通道上。 …

C# public和internal的区别

在C#中&#xff0c;internal 和 public 是访问修饰符&#xff0c;它们控制着类和类成员的可访问性。 Public public 是最常用的访问修饰符。如果一个类或类成员被声明为 public&#xff0c;那么它可以从任何其他类或者是该类的实例访问到。换句话说&#xff0c;它没有任何访问…