【并发专题】操作系统模型及三级缓存架构

目录

  • 课程内容
    • 一、冯诺依曼计算机模型详解
      • 1.计算机五大核心组成部分
      • 2.CPU内部结构
      • 3.CPU缓存结构
      • 4.CPU读取存储器数据过程
      • 5.CPU为何要有高速缓存
  • 学习总结

课程内容

一、冯诺依曼计算机模型详解

现代计算机模型是基于-冯诺依曼计算机模型
计算机在运行时,先从内存中取出第一条指令,通过控制器的译码,按指令的要求,从存储器中取出数据进行指定的运算和逻辑操作等加工,然后再按地址把结果送到内存中去。接下来,再取出第二条指令,在控制器的指挥下完成规定操作。依此进行下去。直至遇到停止指令。
程序与数据一样存贮,按程序编排的顺序,一步一步地取出指令,自动地完成指令规定的操作是计算机最基本的工作模型。这一原理最初是由美籍匈牙利数学家冯.诺依曼于1945年提出来的,故称为冯.诺依曼计算机模型。

1.计算机五大核心组成部分

  1. 控制器(Control):是整个计算机的中枢神经,其功能是对程序规定的控制信息进行解释,根据其要求进行控制,调度程序、数据、地址,协调计算机各部分工作及内存与外设的访问等。
  2. 运算器(Datapath):运算器的功能是对数据进行各种算术运算和逻辑运算,即对数据进行加工处理。
  3. 存储器(Memory):存储器的功能是存储程序、数据和各种信号、命令等信息,并在需要时提供这些信息。
  4. 输入(Input system):输入设备是计算机的重要组成部分,输入设备与输出设备合你为外部设备,简称外设,输入设备的作用是将程序、原始数据、文字、字符、控制命令或现场采集的数据等信息输入到计算机。常见的输入设备有键盘、鼠标器、光电输入机、磁带机、磁盘机、光盘机等。
  5. 输出(Output system):输出设备与输入设备同样是计算机的重要组成部分,它把外算机的中间结果或最后结果、机内的各种数据符号及文字或各种控制信号等信息输出出来。微机常用的输出设备有显示终端CRT、打印机、激光印字机、绘图仪及磁带、光盘机等。

下图-冯诺依曼计算机模型图:
在这里插入图片描述
但是上面的图形属于一种抽象理论模型,它的具体应用就是现代计算机当中的硬件结构设计,如下:
在这里插入图片描述
在上图硬件结构当中,配件很多,但最核心的只有两部分:CPU、内存。所以我们重点学习的也是这两部分。

2.CPU内部结构

CPU内部结构有控制单元、运算单元、数据单元,他们的作用如下:

  • 控制单元:控制单元是整个CPU的指挥控制中心,由指令寄存器IR(Instruction Register)、指令译码器ID(Instruction Decoder)和 操作控制器OC(Operation Controller) 等组成,对协调整个电脑有序工作极为重要。它根据用户预先编好的程序,依次从存储器中取出各条指令,放在指令寄存器IR中,通过指令译码(分析)确定应该进行什么操作,然后通过操作控制器OC,按确定的时序,向相应的部件发出微操作控制信号。操作控制器OC中主要包括:节拍脉冲发生器、控制矩阵、时钟脉冲发生器、复位电路和启停电路等控制逻辑;
  • 运算单元:运算单元是运算器的核心。可以执行算术运算(包括加减乘数等基本运算及其附加运算)和逻辑运算(包括移位、逻辑测试或两个值比较)。相对控制单元而言,运算器接受控制单元的命令而进行动作,即运算单元所进行的全部操作都是由控制单元发出的控制信号来指挥的,所以它是执行部件;
  • 存储单元:存储单元包括 CPU 片内缓存Cache和寄存器组,是 CPU 中暂时存放数据的地方,里面保存着那些等待处理的数据,或已经处理过的数据,CPU 访问寄存器所用的时间要比访问内存的时间短。 寄存器是CPU内部的元件,寄存器拥有非常高的读写速度,所以在寄存器之间的数据传送非常快。采用寄存器,可以减少 CPU 访问内存的次数,从而提高了 CPU 的工作速度。寄存器组可分为专用寄存器和通用寄存器。专用寄存器的作用是固定的,分别寄存相应的数据;而通用寄存器用途广泛并可由程序员规定其用途。

CPU的内部结构图如下所示:
在这里插入图片描述

3.CPU缓存结构

现代CPU为了提升执行效率,减少CPU与内存的交互(交互影响CPU效率),一般在CPU上集成了多级缓存架构,常见的为三级缓存结构

  • L1 Cache,分为数据缓存和指令缓存,逻辑核独占
  • L2 Cache,物理核独占,逻辑核共享
  • L3 Cache,所有物理核共享
    在这里插入图片描述
    存储器存储空间大小:内存>L3>L2>L1>寄存器;
    存储器速度快慢排序:寄存器>L1>L2>L3>内存;
    还有一点值得注意的是:缓存是由最小的存储区块-缓存行(cacheline)组成,缓存行大小通常为64byte
    缓存行是什么意思呢?
    比如你的L1缓存大小是512kb,而cacheline = 64byte,那么L1里就有512 * 1024/64个cacheline了(就跟Mysql分页结构一样

4.CPU读取存储器数据过程

通常来说,CPU读取存储器数据过程如下:

  1. CPU要取寄存器X的值,只需要一步:直接读取;
  2. CPU要取L1 cache的某个值,需要1-3步(或者更多):把cache行锁住,把某个数据拿来,解锁,如果没锁住就慢了;
  3. CPU要取L2 cache的某个值,先要到L1 cache里取,L1当中不存在,在L2里,L2开始加锁,加锁以后,把L2里的数据复制到L1,再执行读L1的过程,上面的3步,再解锁;
  4. CPU取L3 cache的也是一样,只不过先由L3复制到L2,从L2复制到L1,从L1到CPU;
  5. CPU取内存则最复杂:通知内存控制器占用总线带宽,通知内存加锁,发起内存读请求,等待回应,回应数据保存到L3(如果没有就到L2),再从L3/2到L1,再从L1到CPU,之后解除总线锁定。
    是不是挺复杂的,那么为什么要这么设计呢?

5.CPU为何要有高速缓存

主要是因为,CPU在摩尔定律的指导下以每18个月翻一番的速度在发展,然而内存和硬盘的发展速度远远不及CPU。这就造成了高性能能的内存和硬盘价格及其昂贵。然而CPU的高度运算需要高速的数据。为了解决这个问题,CPU厂商在CPU中内置了少量的高速缓存以解决I\O速度和CPU运算速度之间的不匹配问题。
在CPU访问存储设备时,无论是存取数据抑或存取指令,都趋于聚集在一片连续的区域中(就跟Mysql分页结构一样),这就被称为局部性原理,有以下两种:

  • 时间局部性(Temporal Locality):如果一个信息项正在被访问,那么在近期它很可能还会被再次访问(CPU会这么想)。比如循环、递归、方法的反复调用等;
  • 空间局部性(Spatial Locality):如果一个存储器的位置被引用,那么将来他附近的位置也会被引用(CPU会这么想)。比如顺序执行的代码、连续创建的两个对象、数组等。

学习总结

  1. 学习了一些计算机系统模型
  2. 学习了CPU三级缓存结构

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/14610.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

二、SQL-6.DCL-2).权限控制

*是数据库和表的通配符,出现在数据库位置上表示所有数据库,出现在表名位置上,表示所有表 %是主机名的通配符,表示所有主机。 e.g.所有数据库(*)的所有表(*)的所有权限(a…

jeecgboot新建moudle,但是访问404,需要在open moudle setting 里面设置

jeecgboot新建moudle&#xff0c;但是访问404&#xff0c;需要在open moudle setting 里面设置 首先需要确定以下3个pom.xml 最最外层的pom.xml 最最外层的pom.xml <modules><module>jeecg-boot-base-core</module><module>jeecg-module-demo</m…

IDEA将本地项目上传到码云

一、创建本地仓库并关联 用IDEA打开项目&#xff0c;在菜单栏点击vcs->create git repository创建本地仓库&#xff0c; 选择当前项目所在的文件夹当作仓库目录。 二、将项目提交本地仓库 项目名右键就会出现“GIT”这个选项->Add->Commit Directory, 先将项目add…

真正帮你实现—MapReduce统计WordCount词频,并将统计结果按出现次数降序排列

项目整体介绍 对类似WordCount案例的词频统计&#xff0c;并将统计结果按出现次数降序排列。 网上有很多帖子&#xff0c;均用的相似方案&#xff0c;重写某某方法然后。。。运行起来可能会报这样那样的错误&#xff0c;这里实现了一种解决方案&#xff0c;分享出来供大家参考…

力扣 968. 监控二叉树

题目来源&#xff1a;https://leetcode.cn/problems/binary-tree-cameras/description/ C题解&#xff08;来源代码随想录&#xff09;&#xff1a;节点可以分为3个状态&#xff1a;0无覆盖&#xff1b;1有摄像头&#xff1b;2有覆盖。 要想放的摄像头最少&#xff0c;应当叶子…

SOC FPGA之HPS模型设计(一)

目录 一、建立HPS硬件系统模型 1.1 GHRD 1.2 从0开始搭建HPS 1.2.1 FPGA Interfaces 1.2.1.1 General 1.2.1.2 AXI Bridge 1.2.1.3 FPGA-to-HPS SDRAM Interface 1.2.1.4 DMA Peripheral Request 1.2.1.5 Interrupts 1.2.1.6 EMAC ptp interface 1.2.2 Peripheral P…

seata组件使用期间,获取全局事务状态

GlobalStatus枚举类展示全局事务状态 官网链接&#xff1a;http://seata.io/zh-cn/docs/user/appendix/global-transaction-status.html 获得全局事务状态 // 开启全局事务地方获取全局事务xid String xid RootContext.getXID(); // 通过全局事务xid获得GlobalStatus枚举类 …

Unity游戏源码分享-2.5D塔防类游戏

Unity游戏源码分享-2.5D塔防类游戏 项目地址&#xff1a; https://download.csdn.net/download/Highning0007/88118947

操作系统_进程与线程(二)

目录 2. 处理机调度 2.1 调度的基本概念 2.2 调度的层次 2.3 三级调度的联系 2.4 调度的目标 2.5 调度的实现 2.5.1 调度程序&#xff08;调度器&#xff09; 2.5.2 调度的时机、切换与过程 2.5.3 进程调度方式 2.5.4 闲逛进程 2.5.5 两种线程的调度 2.6 典型的调度…

多旋翼物流无人机节能轨迹规划(Python代码实现)

目录 &#x1f4a5;1 概述 &#x1f4da;2 运行结果 &#x1f308;3 Python代码实现 &#x1f389;4 参考文献 &#x1f4a5;1 概述 多旋翼物流无人机的节能轨迹规划是一项重要的技术&#xff0c;可以有效减少无人机的能量消耗&#xff0c;延长飞行时间&#xff0c;提高物流效率…

了解Unity编辑器之组件篇Layout(八)

Layout&#xff1a;用于管理和控制UI元素的排列和自动调整一、Aspect Ratio Fitter&#xff1a;用于根据宽高比自动调整UI元素的大小 Aspect Mode&#xff1a;用于定义纵横比适配的行为方式。Aspect Mode属性有以下几种选项&#xff1a; &#xff08;1&#xff09;None&#xf…

基于ARM+FPGA (STM32+ Cyclone 4)的滚动轴承状态监测系统

状态监测系统能够在故障早期及时发现机械设备的异常状态&#xff0c;避免故障的 进一步恶化造成不必要的损失&#xff0c;滚动轴承是机械设备的易损部件&#xff0c;本文对以滚动 轴承为研究对象的状态监测系统展开研究。现有的监测技术多采用定时上传监 测数据&#xff0c;…

Spring MVC学习笔记,包含mvc架构使用,过滤器、拦截器、执行流程等等

&#x1f600;&#x1f600;&#x1f600;创作不易&#xff0c;各位看官点赞收藏. 文章目录 Spring MVC 习笔记1、Spring MVC demo2、Spring MVC 中常见注解3、数据处理3.1、请求参数处理3.2、响应数据处理 4、RESTFul 风格5、静态资源处理6、HttpMessageConverter 转换器7、过…

Open3D(C++) 根据索引提取点云

目录 一、功能概述1、主要函数2、源码二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接。爬虫网站自重,把自己当个人 一、功能概述 1、主要函数 std::shared_ptr<PointCloud> SelectByIn

spring boot 2 配置上传文件大小限制

一、起因&#xff1a;系统页面上传一个文件超过日志提示的文件最大100M的限制&#xff0c;需要更改配置文件 二、经过&#xff1a; 1、在本地代码中找到配置文件&#xff0c;修改相应数值后交给运维更新生产环境配置&#xff0c;但是运维说生产环境没有这行配置&#xff0c;遂…

MODBUS-TCP转Ethernet IP 网关连接空压机 配置案例

本案例是工业现场应用捷米特JM-EIP-TCP的Ethernet/IP转Modbus-TCP网关连接欧姆龙PLC与空压机的配置案例。使用设备&#xff1a;欧姆龙PLC&#xff0c;捷米特JM-EIP-TCP网关&#xff0c; ETHERNET/IP 的电气连接 ETHERNET/IP 采用标准的 T568B 接法&#xff0c;支持直连和交叉接…

【etcd】docker 启动单点 etcd

etcd: v3.5.9 etcd-browser: rustyx/etcdv3-browser:latest 本文档主要描述用 docker 部署单点的 etcd&#xff0c; 用 etcd-browser 来查看注册到 etcd 的 key 默认配置启动 docker run -d --name ai-etcd --networkhost --restart always \-v $PWD/etcd.conf.yml:/opt/bitn…

生命在于学习——指纹混淆技术学习

一、前言 本篇文章仅为学习笔记记录&#xff0c;不得用于违规用途。 本篇文章为安全社公众号的Poker安全所发&#xff0c;本文仅为学习复现。 二、介绍 指纹混淆技术&#xff0c;顾名思义&#xff0c;就是迷惑指纹扫描识别技术。 三、思路 作者的思路&#xff1a; 1、伪…

常见网关对比

常见网关对比 目前常见的开源网关大致上按照语言分类有如下几类&#xff1a; Nginxlua &#xff1a;OpenResty、Kong、Orange、Abtesting gateway 等 Java &#xff1a;Zuul/Zuul2、Spring Cloud Gateway、Kaazing KWG、gravitee、Dromara soul 等 Go &#xff1a;Janus、fa…

如何⾃定义⼀个SpringBoot Srarter

⾃定义⼀个SpringBoot Srarter 1、创建⼀个项⽬&#xff0c;命名为 demo-springboot-starter&#xff0c;引⼊SpringBoot相关依赖 2、编写配置⽂件 定义属性配置的前缀 3、⾃动装配 创建⾃动配置类HelloPropertiesConfigure 4、配置⾃动类 在 /resources/META-INF/spri…