(论文阅读31/100)Stacked hourglass networks for human pose estimation

31.文献阅读笔记

简介

题目

Stacked hourglass networks for human pose estimation

作者

Alejandro Newell, Kaiyu Yang, and Jia Deng, ECCV, 2016.

原文链接

https://arxiv.org/pdf/1603.06937.pdf

关键词

Human Pose Estimation

研究问题

CNN运用于Human Pose Estimation,

重复自底向上、自顶向下推理。

早期的工作:使用稳健的图像特征(局部解释)和复杂的结构化预测(推断全局一致的姿态)来解决这些困难。

现在:普遍采用卷积神经网络作为其主要构建模块,很大程度上取代了手工制作的特征和图形模型。

任务:从RGB图像中对单个人的姿态进行关键点定位。

研究方法

“stacked hourglass” network:

该网络在图像的所有尺度上捕获和整合信息,基于可视化的池化和后续上采样的步骤来得到网络的最终输出。

不同于以前的设计,主要是在其更对称的拓扑结构。

连续地将多个沙漏模块端到端地放在一起,在单个沙漏上进行扩展。这允许跨尺度自下而上、自上而下的重复推断。结合中间监督的使用,重复的双向推理对网络的最终性能至关重要。

有些方法通过使用单独的管道来解决这个问题,即在多个分辨率下独立处理图像,然后在网络中合并特征。

作者选择使用skip layers的单一管道,以保留每个分辨率下的空间信息。

网络的输出是一组热图,对于给定的热图,网络会预测每个像素上出现关节的概率。

以 256x256 的全输入分辨率运行需要大量 GPU 内存,因此沙漏的最高分辨率(也就是最终输出分辨率)为 64x64。这并不影响网络生成精确联合预测的能力。整个网络从一个步长为 2 的 7x7 卷积层开始,然后是一个残差模块和一轮最大池化,将分辨率从 256 降到 64。

在图 3 所示的沙漏之前有两个残差模块。在整个沙漏过程中,所有残差模块都会输出 256 个特征。

使用 1x1 卷积来减少步骤是有价值的,使用连续的较小滤波器来捕捉更大的空间背景也是有好处的。例如,可以用两个独立的 3x3 滤波器代替 5x5 滤波器。

将一个沙漏的输出作为下一个沙漏的输入。

通过额外的 1x1 卷积将中间预测映射到更多通道,从而将中间预测重新整合到特征空间中。这些特征与前一个沙漏阶段输出的特征一起被添加回沙漏的中间特征中(如图 4 所示)。由此产生的输出可直接作为下一个沙漏模块的输入,从而生成另一组预测结果。在最终的网络设计中,使用了八个沙漏。值得注意的是,沙漏模块之间并不共享权重,而且所有沙漏的预测结果都使用相同的ground truth,因此会产生损失。

网络在确定哪个人值得注释时,无法获得足够的信息。为此,我们对网络进行了训练,使其只对位于正中心的人进行注释。

研究结论

在MPII上,所有关节的平均精度都有超过2 %的提高,对于更困难的关节,如膝盖和脚踝,平均精度提高了4 - 5 %

创新不足

当图像中有多个人物时,一致性问题就变得尤为重要。网络必须决定对谁进行注释,唯一信号就是目标人物的居中和缩放,相信输入会足够清晰,便于解析。遗憾的是,当人物距离很近甚至重叠时,这偶尔会导致模糊不清的情况,

额外知识

图像处理:

自下而上:高分辨率到低分辨率

自上而下:低分辨率到高分辨率

上:低分辨率 提供更多语义信息,具有更大的视野

下:高分辨率 有更多像素,提供更多细节信息

全卷积网络和整体嵌套架构,自下而上处理能力都很强(即提取语义信息),但是自上而下处理能力都很弱,只能对多尺度预测进行合并。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/145718.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于 selenium 实现网站图片采集

写在前面 有小伙伴选题,简单整理理解不足小伙伴帮忙指正 对每个人而言,真正的职责只有一个:找到自我。然后在心中坚守其一生,全心全意,永不停息。所有其它的路都是不完整的,是人的逃避方式,是对…

RabbitMQ之发布确认高级

文章目录 前言一、发布确认 整合springboot1、确认机制方案2、代码架构图3、配置文件4、添加配置类5、消息生产者6、回调接口7、消息消费者8、结果分析 二、回退消息1、Mandatory 参数2、消息生产者代码3、回调接口4、结果分析 三、备份交换机1、代码架构图2、修改配置类3、报警…

jQuery【jQuery树遍历、jQuery动画(一)、jQuery动画(二)】(四)-全面详解(学习总结---从入门到深化)

目录 jQuery树遍历 jQuery动画(一) jQuery动画(二) jQuery树遍历 1、 .children() 获得子元素&#xff0c;可以传递一个选择器参数 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-…

【152.乘积最大子数组】

目录 一、题目描述二、算法原理三、代码实现 一、题目描述 二、算法原理 三、代码实现 class Solution { public:int maxProduct(vector<int>& nums) {int nnums.size();vector<int> f(n);vector<int> g(n);f[0]g[0]nums[0];int retnums[0];for(int i1;…

html书本翻页效果,浪漫表白日记本(附源码)

文章目录 1.设计来源1.1 书本正面1.2 界面1-21.3 界面3-41.4 界面5-61.5 界面7-81.6 界面9-101.7 界面11-121.8 书本结尾 2.效果和源码2.1 动态效果2.2 源代码 源码下载 作者&#xff1a;xcLeigh 文章地址&#xff1a;https://blog.csdn.net/weixin_43151418/article/details/1…

JS进阶——构造函数数据常用函数

1、深入对象 1.1 创建对象三种方式 1.1.1 利用对象字面量创建对象 1.1.2 利用new Object创建对象 1.1.3 利用构造函数创建对象 1.2 构造函数 构造函数&#xff1a;是一种特殊的函数&#xff0c;主要用来初始化对象 使用场景&#xff1a;常规的{...}语法允许创建一个对象。…

NOIP2023模拟19联测40 诡异键盘

题目大意 有一个键盘&#xff0c;上面有 n 1 n1 n1个按键&#xff0c;按下按键 1 ≤ i ≤ n 1\leq i\leq n 1≤i≤n会打印出字符串 S i S_i Si​&#xff0c;按下按键 n 1 n1 n1会删掉结尾的 K K K个字符&#xff0c;如果不足 K K K个字符则全部删完&#xff0c;问打印出 S …

创邻科技亮相ISWC 2023,国际舞台见证知识图谱领域研究突破

近日&#xff0c;第22届国际语义网大会 ISWC 2023 在雅典希腊召开&#xff0c;通过线上线下的形式&#xff0c;聚集了全球的顶级研究人员、从业人员和行业专家&#xff0c;讨论、发展和塑造语义网和知识图谱技术的未来。创邻科技CEO张晨博士作为知识图谱行业专家受邀参会&#…

熟悉 Unity HDRP设置以提高性能

HDRP Version 10 了解如何利用高清晰度渲染管道(HDRP)设置&#xff0c;以最大限度地提高性能&#xff0c;并一次实现强大的图形。 随着Unity 2020 LTS及以后的HDRP版本10的发布&#xff0c;HDRP包继续优先考虑其用户友好的界面&#xff0c;灵活的功能&#xff0c;稳定性和总体…

2023年软件安装管家目录最新

软件目录 ①【电脑办公】电脑系统&#xff08;直接安装&#xff09;Win7Win8Win10OfficeOffice激活office2003office2007office2010office2013office2016office2019office365office2021wps2021Projectproject2007project2010project2016project2019project2013project2021Visio…

机器学习中的独立和同分布 (IID):假设和影响

一、介绍 在机器学习中&#xff0c;独立和同分布 &#xff08;IID&#xff09; 的概念在数据分析、模型训练和评估的各个方面都起着至关重要的作用。IID 假设是确保许多机器学习算法和统计技术的可靠性和有效性的基础。本文探讨了 IID 在机器学习中的重要性、其假设及其对模型开…

Kafka中topic(主题)、broker(代理)、partition(分区)和replication(副本)它们的关系

在Apache Kafka中&#xff0c;有四个重要的概念&#xff1a;topic&#xff08;主题&#xff09;、broker&#xff08;代理&#xff09;、partition&#xff08;分区&#xff09;和replication&#xff08;副本&#xff09;。它们的关系如下&#xff1a; Topic&#xff08;主题&…

leetcode刷题日记:141. Linked List Cycle(环形链表)

这一题是给我们一个链表让我们判断这是否是一个环形链表&#xff0c;我们知道如果一个链表中有环的话这一个链表是没有办法访问到尾的&#xff0c; 假若有如图所示的带环链表&#xff1a; 我们从图示中很容易看出来这一个链表在访问的时候会在里面转圈&#xff0c;我们再来看看…

sklearn 笔记 BallTree/KD Tree

由NearestNeighbors类包装 1 主要使用方法 sklearn.neighbors.BallTree(X, leaf_size40, metricminkowski, **kwargs) X数据集中的点数leaf_size改变 leaf_size 不会影响查询的结果&#xff0c;但可以显著影响查询的速度和构建树所需的内存metric用于距离计算的度量。默认为…

stable diffusion comfyui的api使用教程

一、为什么要使用comfyui的api?对比webui的api&#xff0c;它有什么好处&#xff1f; 1、自带队列 2、支持websocket 3、无需关心插件是否有开放api接口&#xff0c;只要插件在浏览器中可以正常使用&#xff0c;接口就一定可以使用 4、开发人员只需关心绘图流程的搭建 5、切换…

【数据结构】快速排序算法你会写几种?

&#x1f466;个人主页&#xff1a;Weraphael ✍&#x1f3fb;作者简介&#xff1a;目前正在学习c和算法 ✈️专栏&#xff1a;数据结构 &#x1f40b; 希望大家多多支持&#xff0c;咱一起进步&#xff01;&#x1f601; 如果文章有啥瑕疵 希望大佬指点一二 如果文章对你有帮助…

Stable Diffusion 是否使用 GPU?

在线工具推荐&#xff1a; Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 3D数字孪生场景编辑器 Stable Diffusion 已迅速成为最流行的生成式 AI 工具之一&#xff0c;用于通过文本到图像扩散模型创建图像。但是&#xff0c;它需…

Linux基本指令及周边(第一弹)

文章目录 前言mkdir指令&#xff08;重要&#xff09;&#xff1a;tree指令rmdir指令 && rm 指令(重要&#xff09;&#xff1a;touch指令ls指令pwd指令cd 指令用户家目录man指令&#xff08;重要&#xff09;&#xff1a;mv指令&#xff08;重要&#xff09;cat指令绝…

vue2+elementUI 仿照SPC开发CPK分析工具

源码地址请访问 Vue CPK分析工具页面设计源码&#xff08;支持左右可拖拽和表格可编辑、复制粘贴&#xff09;仿照SPC开发-CSDN博客

序列化、反序列化和反射会破坏单例模式

反射和序列化操作都可能破坏单例模式的实现。 使用反射可以访问类的私有构造函数并强制创建一个新的实例&#xff0c;这将破坏单例模式的唯一性原则&#xff0c;因为它允许创建多个实例。为防止这种情况发生&#xff0c;可以通过在单例类的构造函数中添加防止多次实例化的检查…