数据结构 链表

单链表:单链表用来写邻接表,邻接表用来存储图和树

双链表:用来优化某些问题

单链表

链式存储

#include<stdio.h>

#include<stdlib.h>

int cont = 0;

//结构体

typedef struct List {

int data; //数据域

struct List* next; //指针域,指向当前结点的下一个结点,next指针的作用:1.直接访问下一个结点2.进行链表的遍历

}List,*Listptr; //类型名

//创建链表

_Bool CreateList(Listptr *head) { //若改变一级指针的值【一级指针所存储的地址】,只能找到二级指针进行修改,Listptr本身就是一级指针,Listptr*是二级指针【传参过程,如果想要改变参数本身,只能使用指针/引用进行】

*head = (Listptr)malloc(sizeof(List));//为第一个结点【头节点,什么都不放】申请空间 “=”改变指针的指向 malloc()请的空间是void*类型

//C语言指针赋值的规则:基类型相容,修饰符种类与个数:左边>右边

if(*head){

(*head)->data = 0;

(*head)->next = NULL;//指向为空,避免野指针的出现

return 1;

}

else

return 0;

}

//头插法

void Insert(Listptr head) {

Listptr temp;//要插入的结点

CreateList(&temp);//对新的结点进行申请空间和初始化结点

scanf("%d", &temp->data);

temp->next = head->next;//改变next指针的指向,先进行这一步,防止数据丢失

head->next = temp;

}

//尾插法,引入一个Listptr end(尾结点),指向最后一个结点

//尾插法 未引入尾结点

void Bottom_Insert(Listptr head) {

Listptr temp;

CreateList(&temp);

scanf("%d", &temp->data);

while (head->next) {

head = head->next;

}

head->next = temp;

}

//特定位置插

void Particular_Insert(Listptr head, int index) {

Listptr temp;

CreateList(&temp);

scanf("%d", &temp->data);

int i = 0; //此时位置从0开始算起

//int i = 1; 此时位置从1开始算起

while (i < index && head) {

i++;

head = head->next;

}

if (i == index && head) { //找到特定位置,并且该位置不是尾结点

temp->next = head->next;

head->next = temp;

}

else if (i == index && !head) { //找到特定位置,但是该位置是尾结点

head->next = temp;

}

else { //未找到特定位置

printf("插入失败\n");

}

}

//查——遍历查找

Listptr Search(Listptr head,int check) {

Listptr i = head;//i指针指向头结点,头结点不存放数据,故不用判断

while (i->next) {//i->next!=NULL;的时候进行循环

i = i->next;

cont++;

if (i->data == check) {

return i;

}

}

return NULL;

}

//按个数查找,只查找一个

Listptr SearchIndex(Listptr head, int index) {

int i = 0;

while (i < index && head != NULL) { //当查到找到或者查到末尾时停止

i++;

head = head->next;

}

if (head && i==index) //找到

return head;

else

return NULL;

}

//输出——遍历输出

void Print(Listptr head) {

Listptr i = head;//i本身就是一个指针

while (i->next) {//i->next!=NULL;的时候进行循环

i = i->next;

printf("%d ", i->data);

}

printf("\n");

}

//删1——删除特定的结点——按结点个数来查找

//需要遍历查到特定结点

_Bool DeleteNode(Listptr head,int index,int *e){

int i = 0;

Listptr front = head;

i = 1;

head = head->next;

while (i < index && head!= NULL) {

front = head;

head = head->next;

i++;

}

if (i == index && head != NULL) {//head就是查找的结点,front就是查找的前一个值

Listptr t = head;

front->next = head->next;

*e = t->data;

free(t);

return 1;

}

return 0;

}

//删2——删除特定结点——按结点个数查找

//使用查找函数查找

_Bool DeleteNode_SearchIndex(Listptr head, int index, int* e) {

Listptr front = SearchIndex(head, index - 1);

head = SearchIndex(head, index);

if (head && front) {

Listptr t = head;

front->next = head->next;

*e = t->data;

free(t);

return 1;

}

return 0;

}

//改

_Bool Alert(Listptr head, int index, int data) {

head = SearchIndex(head, index);

if (head) {

head->data = data;

return 1;

}

else

return 0;

}

int main() {

Listptr head; //第一个结点的指针

CreateList(&head);//对链表进行初始化

for (int i = 0;i < 10;i++) {

Insert(head);//插入

}

Print(head);//输出

for (int i = 0;i < 5;i++) {

int index = 0;

scanf("%d", &index);

printf("%d\n", SearchIndex(head, index)->data);

scanf("%d", &index);

int data;//删除

if (DeleteNode(head, index, &data)) {

printf("删除成功,删除值为%d\n", data);

}

else

printf("删除失败\n");

Print(head);

scanf("%d%d", &index, &data);

if (Alert(head, index, data)) {//更改

printf("更改成功\n");

}

else

printf("更改失败\n");

Print(head);

}

for (int i = 0;i < 10;i++) {

int check = 0;

scanf("%d", &check);

if (!Search(head, check)) {//查找

printf("没查到\n");

}

else

printf("第%d个结点\n",cont);

}

return 0;

}

自己码代码

#include<stdio.h>

#include<stdlib.h>

typedef struct List {

int data;

struct List* next;

}List,*Listptr;

int cont=0;

//初始化

_Bool CreateList(Listptr* head) {

*head = (Listptr)malloc(sizeof(List));

if (*head) {

(*head)->data = 0;

(*head)->next = NULL;

return 1;

}

else

return 0;

}

//头插法

void Insert(Listptr head) {

Listptr temp;

CreateList(&temp);

scanf("%d", &temp->data);

temp->next = head->next;

head->next = temp;

}

//尾插法

void Bottom_Insert(Listptr head) {

Listptr temp;

CreateList(&temp);

scanf("%d", &temp->data);

while (head->next) {

head = head->next;

}

head->next = temp;

}

//特定位置插

void Particular_Insert(Listptr head, int index) {

Listptr temp;

CreateList(&temp);

scanf("%d", &temp->data);

int i = 0;

while (i < index && head) {

i++;

head = head->next;

}

if (i == index && head) {

temp->next = head->next;

head->next = temp;

}

else if (i == index && !head) {

head->next = temp;

}

else {

printf("插入失败\n");

}

}

//查1——按值查找

Listptr Search(Listptr head, int check) {

Listptr i;

i = head;

while (i->next) {

i = i->next;

cont++;

if (i->data == check) {

return i;

}

}

return NULL;

}

//查2——按结点位置查找

Listptr SearchIndex(Listptr head, int index) {

int i = 0;

while (i < index && head) {

i++;

head = head->next;

}

if (head && i == index) {

return head;

}

else

return NULL;

}

//输出

void Print(Listptr head) {

Listptr i = head;

while (i->next) {

i = i->next;

printf("%d ", i->data);

}

printf("\n");

}

//删——删除特定节点

_Bool DeleteNode(Listptr head, int index, int* e) {

Listptr front = SearchIndex(head, index - 1);

head = SearchIndex(head, index);

if (head && front) {

Listptr t = head;

front->next = head->next;

*e = t->data;

free(t);

return 1;

}

return 0;

}

//改

_Bool Alert(Listptr head, int index, int data) {

head = SearchIndex(head, index);

if (head) {

head->data = data;

return 1;

}

else

return 0;

}

int main() {

Listptr head;

CreateList(&head);

for (int i = 0;i < 5;i++) {

Insert(head);//头插法

}

Print(head);

Bottom_Insert(head);//尾插法

Print(head);

int index1;

scanf("%d", &index1);

Particular_Insert(head, index1);//特定位置插入

Print(head);

int check;

scanf("%d", &check);

Search(head, check);//按值查找

printf("值为%d的是第%d个结点\n", check, cont);

int index2;

scanf("%d", &index2);

printf("第%d个结点的值为%d\n", index2, SearchIndex(head, index2)->data);//按位置查找

int index3;

scanf("%d", &index3);

int data1;

if (DeleteNode(head, index3, &data1)) {//删

printf("删除成功,删除值为%d\n", data1);

}

else

printf("删除失败\n");

Print(head);

int index4, data2;

scanf("%d%d", &index4, &data2);

if (Alert(head, index4, data2)) {//改

printf("更改成功\n");

}

else

printf("更改失败\n");

Print(head);

return 0;

}

顺序存储

用数组模拟链表,静态链表,比动态链表快(因为 new 生成新结点慢)

//链表的顺序存储,用数组来模拟链表

#include<stdio.h>

#define N 100

typedef struct List {//typedef作用:将后面的定义变量的语句变成给类型重命名的语句

int data;

int next;//索引,下标可以替代next指针,以此来访问下一个结点

}List, * Listptr;

List heap[100] = { 0 };//数组代表堆这个空间

//确定数组未使用空间为空 1.逐个遍历——麻烦 2.将空余空间构成链表【整体过程存在两个链表,一个是有数据即将使用的链表,一个是空余未使用空间串联构成的备用链表(当需要空间的时候,自取)】

//初始化

int head, leisure;//分别代表两个链表的头指针,head是using链表的头指针,用来指向第一个结点,leisure是空余链表的头指针

void InitHeap() {

int i;

head = 0;

//heap[0].next = 1;//用来存储空余链表的第一个结点的下标

heap[N - 1].next = 0;//0代表为空,意思是什么都不指向,指向为NULL,next只要为0,就相当于什么都不指向,指向为空

for (i = 0;i < N - 1;i++) {

heap[i].next = i + 1;

}

}

//模仿malloc

int Malloc() {//空间申请,申请一个结点的空间,一个结点==数组中的一个元素

int temp;

if (heap[0].next) {//heap[0].next==0 整个堆中没有空余空间,反之有空余空间

temp = heap[0].next;//临时变量存储要删除的结点

heap[0].next = heap[heap[0].next].next;//利用第一个结点指向第三个结点,第一个结点存储的第二个结点的下标,第二个结点存储的第三个结点的下标

return temp;//返回刚申请空间的索引

}

else {

return 0;//无法申请空间

}

}

//模仿free

void Free(int index) {//动态链表中释放空间,静态链表中将正在使用链表中的结点放在空余链表中

//因为这个空间本来就有,所以就不用再申请了

heap[index].next = heap[0].next;

heap[0].next = index;

}

//增——头插法

_Bool InsertHead() {

int temp = Malloc();

if (temp) {

heap[temp].next = head;

head = temp;

return 1;

}

else

return 0;

}

//按data值查找

int Search(int check) {

int temp = head;//将第一个结点的索引赋给temp,所以heap[temp]指的是第一个结点

while (temp) {

if (heap[temp].data == check) {

return temp;

}

else {

temp = heap[temp].next;

}

}

}

//按索引查找

int SearchByIndex(int Index) {

int i = head, cont = 0;

while (i < Index && i != 0) {

cont++;

if (cont == Index) {

return i;

}

else {

i = heap[i].next;

}

}

return 0;

}

//改

_Bool Alert(int index, int data) {

int temp = Search(index);

if (temp) {

heap[temp].data = data;

return 1;

}

else

return 0;

}

//删

_Bool Delete(int index) {

int front = SearchByIndex(index - 1), aim = SearchByIndex(index);

if (aim && front) {//从第二个结点开始删除

int temp = aim;//存储要删除的结点

heap[front].next = heap[aim].next;//将目标前一个结点指向目标后一个结点

Free(temp);

}

else if (aim) {//从第一个结点开始删除

int temp = aim;

front = heap[aim].next;//如果使用 heap[front].next = heap[aim].next;将会丢失空余链表剩下的部分,因为你直接将空余链表的头结点指向第二个结点,使得空余链表的后面的空结点丢失

Free(temp);

}

}

int main() {

return 0;

}

Acwing 课程

代码

//使用两个数组模拟链表

#include<iostream>

using namespace std;

const int N = 100010;

//head表示头结点的下标,头结点最开始指向一个空结点(用-1表示),每次插入一个新的元素

//e[i]表示结点i的值,ne[i]表示结点i的next指针是多少

//idx存储当前已经用到哪个点

int head, e[N], ne[N], idx;

//初始化

void init() {

head = -1;//表示空集

idx = 0;

}

//头插法 分两步进行

void add_to_head(int x) {

e[idx] = x;//存储数值

ne[idx] = head;//第一步

head = idx;//第二步

idx++;

}

//指定位置插

//将x插到下标是k这个点后面

//分两步进行

void add(int k, int x) {

e[idx] = x;

ne[idx] = ne[k];

ne[k] = idx;

idx++;

}

//删除特定位置的点

//删去下标为k的后面的一个点

void remove(int k) {

ne[k] = ne[ne[k]];

}

int main() {

return 0;

}

题目

实现一个单链表,链表初始为空,支持三种操作:

(1) 向链表头插入一个数;

(2) 删除第k个插入的数后面的数;

(3) 在第k个插入的数后插入一个数

现在要对该链表进行M次操作,进行完所有操作后,从头到尾输出整个链表。

注意:题目中第k个插入的数并不是指当前链表的第k个数。例如操作过程中一共插入了n个数,则按照插入的时间顺序,这n个数依次为:第1个插入的数,第2个插入的数,…第n个插入的数。

输入格式

第一行包含整数M,表示操作次数。

接下来M行,每行包含一个操作命令,操作命令可能为以下几种:

(1) “H x”,表示向链表头插入一个数x。//头插法

(2) “D k”,表示删除第k个输入的数后面的数(当k为0时,表示删除头结点)。//第k个输入,下标为k-1,即删除下标为k-1后面的数

(3) “I k x”,表示在第k个输入的数后面插入一个数x(此操作中k均大于0)。//即在下标为k-1后插入一个数

输出格式

共一行,将整个链表从头到尾输出。

数据范围

1 ≤ M ≤ 100000 1≤M≤1000001≤M≤100000

所有操作保证合法。

输入样例

10

H 9

I 1 1

D 1

D 0

H 6

I 3 6

I 4 5

I 4 5

I 3 4

D 6

输出样例

6 4 6 5

注意点

1.插入、删除操作都是对第k个数后面的数进行操作的,因为指针域存储的是下一个节点。

2.删除时,首先要考虑是否删除的是头节点。

3.输出时从头结点开始,末尾是空,指向−1。

4.scanf在读入字符时不会跳过空格,还是用cin。

//使用两个数组模拟链表

#include<iostream>

using namespace std;

const int N = 100010;

//head表示头结点的下标

//e[i]表示结点i的值,ne[i]表示结点i的next指针是多少

//idx存储当前已经用到哪个点

int head, e[N], ne[N], idx;

//初始化

void init() {

head = -1;//表示空集

idx = 0;

}

//头插法 分两步进行

void add_to_head(int x) {

e[idx] = x;//存储数值

ne[idx] = head;//第一步

head = idx;//第二步

idx++;

}

//指定位置插

//将x插到下标是k这个点后面

//分两步进行

void add(int k, int x) {

e[idx] = x;

ne[idx] = ne[k];

ne[k] = idx;

idx++;

}

//删除特定位置的点

//删去下标为k的后面的一个点

void remove(int k) {

ne[k] = ne[ne[k]];

}

int main() {

int M;

cin >> M;

init();

while (M--) {

int k, x;

char op;

cin >> op;

if (op == 'H') {

cin >> x;

add_to_head(x);

}

else if (op == 'D') {

cin >> k;

if (!k)

head = ne[head];//删除头结点,使head指向它现在指向的点的下一个点,head指向的点就是head本身

remove(k - 1);//因为第一个插入的点下标是0,以此类推

}

else {

cin >> k >> x;

add(k - 1, x);

}

}

for (int i = head;i != -1;i = ne[i])

cout << e[i] << ' ';

return 0;

}

邻接表

实际上就是开了 n 个单链表。

双链表

一个结点有两个指针,分别指向它的左边和右边,l[N],r[N],不专门定义头结点head和尾结点tail,下标为0的点是最左边的点,下标为1的点是最右边的点。

代码

#include<iostream>

using namespace std;

const int N = 100010;

int e[N], l[N], r[N], idx;

//初始化

void init() {

//0表示左端点,1表示右端点,最开始的时候,0号点的右边是1号点,1号点的左边是0号点

r[0] = 1, l[1] = 0;

idx = 2;

}

//增——两种选择,插入到某点的右边或插入到某点的左边

//在下标为k的点的右边插入一个数

void add(int k, int x) {

e[idx] = x;

r[idx] = r[k];

l[idx] = k;

l[r[k]] = idx;

r[k] = idx;

idx++;

}

//在下标为k的点的左边插入一个数

//可以重新写,也可以直接调用,即在l[k]的右边插入一个数 add(l[k],x)

//删

//删除下标为k的点

void remove(int k) {

r[l[k]] = r[k];

l[r[k]] = l[k];

}

int main() {

return 0;

}



 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/145232.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Azure的AI使用-(语言检测、图像分析、图像文本识别)

1.语言检测 安装包&#xff1a; # 语言检测 %pip install azure-ai-textanalytics5.2.0 需要用到密钥和资源的终结点&#xff0c;所以去Azure上创建资源&#xff0c;我这个是创建好的了然后点击密钥和终结者去拿到key和终结点 两个密钥选择哪个都行 语言检测代码示例&#…

使用CXF调用WSDL(二)

简介 本篇文章主要解决了上篇文章中遗留的对象嵌套问题&#xff0c;要想全面解析无限极的对象嵌套需要使用递归去解决 上文链接&#xff1a; 使用CXF调用WSDL&#xff08;一&#xff09; 上文回顾 上文使用了单方法“ call() ”解决了List和基本类型&#xff08;含String&…

【Linux】Linux进程间通信(二)

​ ​&#x1f4dd;个人主页&#xff1a;Sherry的成长之路 &#x1f3e0;学习社区&#xff1a;Sherry的成长之路&#xff08;个人社区&#xff09; &#x1f4d6;专栏链接&#xff1a;Linux &#x1f3af;长路漫漫浩浩&#xff0c;万事皆有期待 上一篇博客&#xff1a;【Linux】…

2023年09月 Python(六级)真题解析#中国电子学会#全国青少年软件编程等级考试

Python等级考试(1~6级)全部真题・点这里 一、单选题(共25题,每题2分,共50分) 第1题 以下选项中,不是tkinter变量类型的是?( ) A: IntVar() B: StringVar() C: DoubleVar() D: FloatVar() 答案:D tkinter 无 FloatVar()变量类型。 第2题 关于tkinter,以下说…

JVM-HotSpot虚拟机对象探秘

目录 一、对象的实例化 &#xff08;一&#xff09;创建对象的方式 &#xff08;二&#xff09;创建对象的步骤 二、对象的内存布局 &#xff08;一&#xff09;对象头 &#xff08;二&#xff09;实例数据 &#xff08;三&#xff09;对齐填充 三、 对象的访问定位 &…

【go】报错整理与解决

文章目录 依赖下载失败checksum mismatch启动报错missing go.sum 依赖下载失败checksum mismatch > go get github.com/hibiken/asynqmon go: downloading github.com/hibiken/asynqmon v0.7.2 go: github.com/hibiken/asynqmonv0.7.2: verifying module: checksum mismatc…

QUIC协议详解

前言协议特点QUIC协议与HTTP/2协议区别QUIC协议的多路复用技术优势QUIC协议在Java中的应用存在的问题 前言 QUIC&#xff08;Quick UDP Internet Connections&#xff09;是一种基于 UDP 的传输层协议&#xff0c;由 Google 提出。从协议栈可以看出&#xff0c;QUIC HTTP/2 …

计算机毕业设计选题推荐-一周穿搭推荐微信小程序/安卓APP-项目实战

✨作者主页&#xff1a;IT研究室✨ 个人简介&#xff1a;曾从事计算机专业培训教学&#xff0c;擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Python…

自定义Graph Component:1.2-其它Tokenizer具体实现

本文主要介绍了Rasa中相关Tokenizer的具体实现&#xff0c;包括默认Tokenizer和第三方Tokenizer。前者包括JiebaTokenizer、MitieTokenizer、SpacyTokenizer和WhitespaceTokenizer&#xff0c;后者包括BertTokenizer和AnotherWhitespaceTokenizer。 一.JiebaTokenizer   Ji…

智慧环保:科技驱动下的环境保护新篇章

智慧环保&#xff1a;科技驱动下的环境保护新篇章 环境保护已经成为当今社会的重要议题&#xff0c;而科技的飞速发展为我们开启了智慧环保的新篇章。在这篇文章中&#xff0c;我们将介绍智慧环保所带来的机会和创新&#xff0c;以及科技在环境保护中的重要作用。 智慧环保的理…

香港科技大学广州|智能制造学域机器人与自主系统学域博士招生宣讲会—中国科学技术大学专场

&#x1f3e0;地点&#xff1a;中国科学技术大学西区学生活动中心&#xff08;一楼&#xff09;报告厅 【宣讲会专场1】让制造更高效、更智能、更可持续—智能制造学域 &#x1f559;时间&#xff1a;2023年11月16日&#xff08;星期四&#xff09;18:00 报名链接&#xff1a…

利用回溯绕过正则表达式

目录 利用strpos的特性拿到flag 利用回溯绕过正则表达式 利用回溯次数绕过正则表达式并且实现文件上传 使用回溯绕过正则表达式waf拿到flag 本篇会讲解三个实验来分别绕过正则表达式&#xff0c;python的正则表达式和Javascript的正则表达式大致相同如果有正则表达式不太懂…

stylelint报错at-rule-no-unknown

stylelint报错at-rule-no-unknown stylelint还将各种 sass -rules 标记mixin为include显示未知错误 at-rule-no-unknown ✖ stylelint --fix:Deprecation warnings: 78:1 ✖ Unexpected unknown at-rule "mixin" at-rule-no-unknown 112:3 ✖ Unexpected un…

设计模式-适配器-笔记

适配器模式Adapter 动机&#xff08;Motivation&#xff09; 在软件系统中&#xff0c;由于应用环境的变化&#xff0c;常常需要将“一些现存的对象”放在新的环境中应用&#xff0c;但是新环境要求的接口是在这些现存对象所不满足的。 如何应对这种“迁移的变化”&#xff1…

力扣第695题 岛屿的最大面积 C++ DFS BFS 附Java代码

题目 695. 岛屿的最大面积 中等 相关标签 深度优先搜索 广度优先搜索 并查集 数组 矩阵 给你一个大小为 m x n 的二进制矩阵 grid 。 岛屿 是由一些相邻的 1 (代表土地) 构成的组合&#xff0c;这里的「相邻」要求两个 1 必须在 水平或者竖直的四个方向上 相邻。你…

如何安装clang-9,clang,clang++

# 制定要version9的clang sudo apt-get install clang-9 # 创建软链 sudo ln -s /usr/bin/clang-9 /usr/bin/clang sudo ln -s /usr/bin/clang-9 /usr/bin/clang如果你已经安装了 clang-9&#xff0c;那么 clang 已经包含在内。通常&#xff0c;clang 是 clang 的一个符号链接&…

【Liunx】部署WEB服务:Apache

【Liunx】部署WEB服务:Apache 概述Apache1.介绍2.Apache文件路径3.Apache详解(1)安装Apache(2)启动Apache(3)配置文件a.Apache主配置文件&#xff1a;vim /etc/httpd/conf/httpd.conf信息&#xff1a;b.基于主机头的虚拟主机 (4)开始演示&#xff1a;a.新建两个网站根目录b.分别…

DVWA - 4

文章目录 JavaScriptlowmedium JavaScript 前端攻击。token 不能由前端生成&#xff0c;js 很容易被攻击者获取&#xff0c;从而伪造 token。同样其他重要的参数也不能由前端生成。 low 不修改输入&#xff0c;点击提交报错: 根据提示改成 success&#xff0c;还是报错&…

3.6 Windows驱动开发:内核进程汇编与反汇编

在笔者上一篇文章《内核MDL读写进程内存》简单介绍了如何通过MDL映射的方式实现进程读写操作&#xff0c;本章将通过如上案例实现远程进程反汇编功能&#xff0c;此类功能也是ARK工具中最常见的功能之一&#xff0c;通常此类功能的实现分为两部分&#xff0c;内核部分只负责读写…

4.1 Windows驱动开发:内核中进程与句柄互转

在内核开发中&#xff0c;经常需要进行进程和句柄之间的互相转换。进程通常由一个唯一的进程标识符&#xff08;PID&#xff09;来标识&#xff0c;而句柄是指对内核对象的引用。在Windows内核中&#xff0c;EProcess结构表示一个进程&#xff0c;而HANDLE是一个句柄。 为了实…