【Golang】Golang进阶系列教程--Go 语言切片是如何扩容的?

文章目录

  • 前言
  • 声明和初始化
  • 扩容时机
  • 源码分析
    • go1.17
    • go1.18
    • 内存对齐
  • 总结

前言

在 Go 语言中,有一个很常用的数据结构,那就是切片(Slice)。

切片是一个拥有相同类型元素的可变长度的序列,它是基于数组类型做的一层封装。它非常灵活,支持自动扩容。

切片是一种引用类型,它有三个属性:指针,长度和容量。
在这里插入图片描述

底层源码定义如下:

type slice struct {array unsafe.Pointerlen   intcap   int
}
  • 指针: 指向 slice 可以访问到的第一个元素。
  • 长度: slice 中元素个数。
  • 容量: slice 起始元素到底层数组最后一个元素间的元素个数。

比如使用 make([]byte, 5) 创建一个切片,它看起来是这样的:
在这里插入图片描述

声明和初始化

切片的使用还是比较简单的,这里举一个例子,直接看代码吧。

func main() {var nums []int  // 声明切片fmt.Println(len(nums), cap(nums)) // 0 0nums = append(nums, 1)   // 初始化fmt.Println(len(nums), cap(nums)) // 1 1nums1 := []int{1,2,3,4}    // 声明并初始化fmt.Println(len(nums1), cap(nums1))    // 4 4nums2 := make([]int,3,5)   // 使用make()函数构造切片fmt.Println(len(nums2), cap(nums2))    // 3 5
}

扩容时机

当切片的长度超过其容量时,切片会自动扩容。这通常发生在使用 append 函数向切片中添加元素时。

扩容时,Go 运行时会分配一个新的底层数组,并将原始切片中的元素复制到新数组中。然后,原始切片将指向新数组,并更新其长度和容量。

需要注意的是,由于扩容会分配新数组并复制元素,因此可能会影响性能。如果你知道要添加多少元素,可以使用 make 函数预先分配足够大的切片来避免频繁扩容。

接下来看看 append 函数,签名如下:

func Append(slice []int, items ...int) []int

append 函数参数长度可变,可以追加多个值,还可以直接追加一个切片。使用起来比较简单,分别看两个例子:
追加多个值:

package mainimport "fmt"func main() {s := []int{1, 2, 3}fmt.Println("初始切片:", s)s = append(s, 4, 5, 6)fmt.Println("追加多个值后的切片:", s)
}

输出结果为:

初始切片: [1 2 3]
追加多个值后的切片: [1 2 3 4 5 6]

再来看一下直接追加一个切片:

package mainimport "fmt"func main() {s1 := []int{1, 2, 3}fmt.Println("初始切片:", s1)s2 := []int{4, 5, 6}s1 = append(s1, s2...)fmt.Println("追加另一个切片后的切片:", s1)
}

输出结果为:

初始切片: [1 2 3]
追加另一个切片后的切片: [1 2 3 4 5 6]

再来看一个发生扩容的例子:

package mainimport "fmt"func main() {s := make([]int, 0, 3) // 创建一个长度为0,容量为3的切片fmt.Printf("初始状态: len=%d cap=%d %v\n", len(s), cap(s), s)for i := 1; i <= 5; i++ {s = append(s, i) // 向切片中添加元素fmt.Printf("添加元素%d: len=%d cap=%d %v\n", i, len(s), cap(s), s)}
}

输出结果为:

初始状态: len=0 cap=3 []
添加元素1: len=1 cap=3 [1]
添加元素2: len=2 cap=3 [1 2]
添加元素3: len=3 cap=3 [1 2 3]
添加元素4: len=4 cap=6 [1 2 3 4]
添加元素5: len=5 cap=6 [1 2 3 4 5]

在这个例子中,我们创建了一个长度为 0,容量为 3 的切片。然后,我们使用 append 函数向切片中添加 5 个元素。

当我们添加第 4 个元素时,切片的长度超过了其容量。此时,切片会自动扩容。新的容量是原始容量的两倍,即 6。

表面现象已经看到了,接下来,我们就深入到源码层面,看看切片的扩容机制到底是什么样的。

源码分析

在 Go 语言的源码中,切片扩容通常是在进行切片的 append 操作时触发的。在进行 append 操作时,如果切片容量不足以容纳新的元素,就需要对切片进行扩容,此时就会调用 growslice 函数进行扩容。

growslice 函数定义在 Go 语言的 runtime 包中,它的调用是在编译后的代码中实现的。具体来说,当执行 append 操作时,编译器会将其转换为类似下面的代码:

slice = append(slice, elem)

在上述代码中,如果切片容量不足以容纳新的元素,则会调用 growslice 函数进行扩容。所以 growslice 函数的调用是由编译器在生成的机器码中实现的,而不是在源代码中显式调用的。

切片扩容策略有两个阶段,go1.18 之前和之后是不同的,这一点在 go1.18 的 release notes 中有说明。

下面我用 go1.17 和 go1.18 两个版本来分开说明。先通过一段测试代码,直观感受一下两个版本在扩容上的区别。

package mainimport "fmt"func main() {s := make([]int, 0)oldCap := cap(s)for i := 0; i < 2048; i++ {s = append(s, i)newCap := cap(s)if newCap != oldCap {fmt.Printf("[%d -> %4d] cap = %-4d  |  after append %-4d  cap = %-4d\n", 0, i-1, oldCap, i, newCap)oldCap = newCap}}
}

上述代码先创建了一个空的 slice,然后在一个循环里不断往里面 append 新元素。
然后记录容量的变化,每当容量发生变化的时候,记录下老的容量,添加的元素,以及添加完元素之后的容量。
这样就可以观察,新老 slice 的容量变化情况,从而找出规律。
运行结果(1.17 版本):

[0 ->   -1] cap = 0     |  after append 0     cap = 1   
[0 ->    0] cap = 1     |  after append 1     cap = 2   
[0 ->    1] cap = 2     |  after append 2     cap = 4   
[0 ->    3] cap = 4     |  after append 4     cap = 8   
[0 ->    7] cap = 8     |  after append 8     cap = 16  
[0 ->   15] cap = 16    |  after append 16    cap = 32  
[0 ->   31] cap = 32    |  after append 32    cap = 64  
[0 ->   63] cap = 64    |  after append 64    cap = 128 
[0 ->  127] cap = 128   |  after append 128   cap = 256 
[0 ->  255] cap = 256   |  after append 256   cap = 512 
[0 ->  511] cap = 512   |  after append 512   cap = 1024
[0 -> 1023] cap = 1024  |  after append 1024  cap = 1280
[0 -> 1279] cap = 1280  |  after append 1280  cap = 1696
[0 -> 1695] cap = 1696  |  after append 1696  cap = 2304

运行结果(1.18 版本):

[0 ->   -1] cap = 0     |  after append 0     cap = 1
[0 ->    0] cap = 1     |  after append 1     cap = 2   
[0 ->    1] cap = 2     |  after append 2     cap = 4   
[0 ->    3] cap = 4     |  after append 4     cap = 8   
[0 ->    7] cap = 8     |  after append 8     cap = 16  
[0 ->   15] cap = 16    |  after append 16    cap = 32  
[0 ->   31] cap = 32    |  after append 32    cap = 64  
[0 ->   63] cap = 64    |  after append 64    cap = 128 
[0 ->  127] cap = 128   |  after append 128   cap = 256 
[0 ->  255] cap = 256   |  after append 256   cap = 512 
[0 ->  511] cap = 512   |  after append 512   cap = 848 
[0 ->  847] cap = 848   |  after append 848   cap = 1280
[0 -> 1279] cap = 1280  |  after append 1280  cap = 1792
[0 -> 1791] cap = 1792  |  after append 1792  cap = 2560

根据上面的结果还是能看到区别的,具体扩容策略下面边看源码边说明。

go1.17

扩容调用的是 growslice 函数,我复制了其中计算新容量部分的代码。

// src/runtime/slice.gofunc growslice(et *_type, old slice, cap int) slice {// ...newcap := old.capdoublecap := newcap + newcapif cap > doublecap {newcap = cap} else {if old.cap < 1024 {newcap = doublecap} else {// Check 0 < newcap to detect overflow// and prevent an infinite loop.for 0 < newcap && newcap < cap {newcap += newcap / 4}// Set newcap to the requested cap when// the newcap calculation overflowed.if newcap <= 0 {newcap = cap}}}// ...return slice{p, old.len, newcap}
}

在分配内存空间之前需要先确定新的切片容量,运行时根据切片的当前容量选择不同的策略进行扩容:

  • 如果期望容量大于当前容量的两倍就会使用期望容量;
  • 如果当前切片的长度小于 1024 就会将容量翻倍;
  • 如果当前切片的长度大于等于 1024 就会每次增加 25% 的容量,直到新容量大于期望容量;

go1.18

// src/runtime/slice.gofunc growslice(et *_type, old slice, cap int) slice {// ...newcap := old.capdoublecap := newcap + newcapif cap > doublecap {newcap = cap} else {const threshold = 256if old.cap < threshold {newcap = doublecap} else {// Check 0 < newcap to detect overflow// and prevent an infinite loop.for 0 < newcap && newcap < cap {// Transition from growing 2x for small slices// to growing 1.25x for large slices. This formula// gives a smooth-ish transition between the two.newcap += (newcap + 3*threshold) / 4}// Set newcap to the requested cap when// the newcap calculation overflowed.if newcap <= 0 {newcap = cap}}}// ...return slice{p, old.len, newcap}
}

和之前版本的区别,主要在扩容阈值,以及这行代码:newcap += (newcap + 3*threshold) / 4。

在分配内存空间之前需要先确定新的切片容量,运行时根据切片的当前容量选择不同的策略进行扩容:

  • 如果期望容量大于当前容量的两倍就会使用期望容量;
  • 如果当前切片的长度小于阈值(默认 256)就会将容量翻倍;
  • 如果当前切片的长度大于等于阈值(默认 256),就会每次增加 25% 的容量,基准是 newcap + 3*threshold,直到新容量大于期望容量;

内存对齐

分析完两个版本的扩容策略之后,再看前面的那段测试代码,就会发现扩容之后的容量并不是严格按照这个策略的。

那是为什么呢?

实际上,growslice 的后半部分还有更进一步的优化(内存对齐等),靠的是 roundupsize 函数,在计算完 newcap 值之后,还会有一个步骤计算最终的容量:

capmem = roundupsize(uintptr(newcap) * ptrSize)
newcap = int(capmem / ptrSize)

这个函数的实现就不在这里深入了,先挖一个坑,以后再来补上。

总结

切片扩容通常是在进行切片的 append 操作时触发的。在进行 append 操作时,如果切片容量不足以容纳新的元素,就需要对切片进行扩容,此时就会调用 growslice 函数进行扩容。
切片扩容分两个阶段,分为 go1.18 之前和之后:

一、go1.18 之前:

  • 如果期望容量大于当前容量的两倍就会使用期望容量;
  • 如果当前切片的长度小于 1024 就会将容量翻倍;
  • 如果当前切片的长度大于 1024 就会每次增加 25% 的容量,直到新容量大于期望容量;

二、go1.18 之后:

  • 如果期望容量大于当前容量的两倍就会使用期望容量;
  • 如果当前切片的长度小于阈值(默认 256)就会将容量翻倍;
  • 如果当前切片的长度大于等于阈值(默认 256),就会每次增加 25% 的容量,基准是 newcap + 3*threshold,直到新容量大于期望容量;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/14490.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于IAP的嵌入式系统在线编程设计(学习)

摘要&#xff1a;为了实现嵌入式系统程序的在线升级&#xff0c;提出一种基于IAP在线编程的程序更新方法。 以STM32L431控制器为例&#xff0c;该方法对控制器的片内FLASH进行区域划分&#xff0c;分别存放引导程序、执行程序及待更新程序。 系统通过运行引导程序将待更新程序…

手把手教你使用stable diffusion生成自己的艺术二维码

艺术二维码制作指南 导读midjourneystable diffusion 环境准备安装stable diffusion webuisd-webui-qrcode-toolkit安装 草料二维码模型准备QR PatternQR Code MonsterIoC Lab Control Net 艺术二维码制作1. 二维码信息提取2. 使用QR Tookit生成二维码3. 下载二维码图片4. prom…

大数据Flink(五十):流式计算简介

文章目录 流式计算简介 一、数据的时效性 二、流式计算和批量计算

【手机】三星手机刷机解决SecSetupWizard已停止

三星手机恢复出厂设置之后&#xff0c;出现SecSetupWizard已停止的解决方案 零、问题 我手上有一部同学给的三星 GT-S6812I&#xff0c;这几天搞了张新卡&#xff0c;多余出的卡就放到这个手机上玩去了。因为是获取了root权限的&#xff08;直接使用KingRoot就可以&#xff0…

数据安全:DataSecurity Plus

随着数字化时代的来临&#xff0c;数据成为了企业和个人生活中不可或缺的一部分。然而&#xff0c;数据的增长和广泛应用也带来了许多安全挑战。数据泄露、黑客攻击和恶意软件成为了威胁数据安全的主要因素。在这个充满风险的环境中&#xff0c;DataSecurity Plus作为一种强大的…

一起学算法(选择排序篇)

距离上次更新已经很久了&#xff0c;以前都是非常认真的写笔记进行知识分享&#xff0c;但是带来的情况并不是很好&#xff0c;一度认为发博客是没有意义的&#xff0c;但是这几天想了很多&#xff0c;已经失去了当时写博客的初心了&#xff0c;但是我觉得应该做点有意义的事&a…

测试常见前端bug

目录 协作 测试方法 标签&#xff1a;标签 内容/ref/ 判断 arr&&arr.length 交互 样式不生效&#xff1a;devtools查找&#xff0c;编译前的标签&#xff0c;运行时不一定存在 可交互的需要提示 hover样式 没有交互逻辑&#xff0c;就不要设置交互 无法交互…

为 Google Play 即将推出基于区块链的内容政策做好准备

作者 / Joseph Mills, Group Product Manager, Google Play 作为一个平台&#xff0c;Google Play 一直致力于帮助开发者将创新理念变为现实。Google Play 上托管了许多和区块链相关的应用&#xff0c;我们深知合作伙伴们希望扩展这些应用&#xff0c;并利用 NFT 等代币化数字资…

使用WGCLOUD监测安卓(Android)设备的运行状态

WGCLOUD是一款开源运维监控软件&#xff0c;除了能监控各种服务器、主机、进程应用、端口、接口、docker容器、日志、数据等资源 WGCLOUD还可以监测安卓设备&#xff0c;比如安卓手机、安卓设备等 我们只要下载对应的安卓客户端&#xff0c;部署运行即可&#xff0c;如下是下…

Vue3 Radio单选切换展示不同内容

Vue3 Radio单选框切换展示不同内容 环境&#xff1a;vue3tsviteelement plus 技巧&#xff1a;v-if&#xff0c;v-show的使用 实现功能&#xff1a;点击单选框展示不同的输入框 效果实现前的代码&#xff1a; <template><div class"home"><el-row …

优化 SQL 体验:五款 AI 驱动工具助力 SQL 查询

SQL AI 工具能够极大提高跟数据和数据库打交道人员&#xff08;e.g. 数据分析师、数据科学家、数据库管理员、开发者&#xff09;的效率和生产力&#xff0c;比如可以根据自然语言输入自动生成 SQL 查询&#xff08;非技术用户也能轻松访问和分析数据了&#xff01;&#xff09…

【分布式能源的选址与定容】基于多目标粒子群算法分布式电源选址定容规划研究(Matlab代码实现)

目录 &#x1f4a5;1 概述 1.1 功率损耗 ​编辑1.2 电压质量 1.3 DG总容量 &#x1f4da;2 运行结果 &#x1f308;3 Matlab代码实现 &#x1f389;4 参考文献 &#x1f4a5;1 概述 参考文献&#xff1a; 本文采用的是换一个算法解决&#xff0c; 基于基于多目标粒子群算法分布…

AB 压力测试

服务器配置 阿里云Ubuntu 64位 CPU1 核 内存2 GB 公网带宽1 Mbps ab -c100 -n1000 http://127.0.0.1:9501/ -n&#xff1a;在测试会话中所执行的请求个数。默认时&#xff0c;仅执行一个请求。 -c&#xff1a;一次产生的请求个数。默认是一次一个。 ab -c 100 -n 200 ht…

Doris注意事项,Doris部署在阿里云,写不进去数据

1.Doris官网 Doris官网https://doris.apache.org/ 2.根本原因 本地idea访问FE&#xff0c;FE会返回BE的地址&#xff0c;但是在服务器上通过ip addr查看&#xff0c;发现只有局域网IP&#xff0c;所以FE返回了局域网的IP&#xff0c;导致idea连接不上BE 3.解决办法 重写Ba…

二十三章:抗对抗性操纵的弱监督和半监督语义分割的属性解释

0.摘要 弱监督语义分割从分类器中生成像素级定位&#xff0c;但往往会限制其关注目标对象的一个小的区域。AdvCAM是一种图像的属性图&#xff0c;通过增加分类分数来进行操作。这种操作以反对抗的方式实现&#xff0c;沿着像素梯度的相反方向扰动图像。它迫使最初被认为不具有区…

10. Mybatis 项目的创建

目录 1. Mybatis 概念 2. 第一个 Mybits 查询 2.1 创建数据库和表 2.2 添加 Mybatis 框架支持 2.3 添加配置文件 2.4 配置 MyBatis 中的 XML 路径 2.5 添加业务代码 在学习 Mybatis 之前&#xff0c;我们需要知道 Mybatis 和 Spring 没有任何的关系。如果一定要强调二者…

建造者设计模式 + 高阶函数 => DSL

该设计模式适用于创建复杂对象&#xff0c;该复杂对象通常是由各个部分的子对象用一定的算法或者步骤构成&#xff0c;针对每个子对象内部算法和步骤通常是稳定的&#xff0c;但是该复杂对象的确实由于不同的需求而选择使用不同的子对象进行组装。对于构建该复杂的对象&#xf…

20.0 HTTP 通信

1. web开发 1.1 web开发介绍 Web指的是World Wide Web(万维网), 是一种基于互联网的信息系统. 万维网由一系列通过超文本链接相互连接的页面组成, 这些页面中包含了文本, 图像, 音频, 视频等多媒体内容. 用户可以通过浏览器访问万维网上的网页, 并通过超链接在不同页面之间导…

Golang速成

目录 Golang 语言特性Golang的优势Golang 的应用场景Golang 的不足 基础语法变量的声明常量与 iotastring字符串遍历strings 包bytes 包strconv 包unicode 包 循环语句range 函数多返回值init 函数闭包import 导包匿名函数 指针defer切片 slice数组sliceslice 操作… mapmap 的…

数据结构基础知识、名词概述

1.1 基本概念和术语1.1.1 数据、 数据元素、 数据项和数据对象1.1.2 数据结构1.1.3 数据类型和抽象数据类型 1.2 抽象数据类型的表示与实现1.3 算法与算法分析&#xff08;1&#xff09;1.4 算法与算法分析&#xff08;2&#xff09;1.5 算法与算法分析&#xff08;3&#xff0…