Ubuntu20.04配置深度学习环境

默认你已经完成Ubuntu20.04的安装,如果没安装的话可以参考其他博客,我的显卡是GTX1660Ti

一、NVIDIA显卡驱动安装

       大多数人在安装Ubutnu20.04系统的时候为了节约时间,通常不会勾选“图形或无线硬件,以及其他媒体格式安装第三方软件”,系统会默认使用Ubuntu社区自己开发的开源显卡驱动“nouveau”,而不是NVIDIA的显卡驱动,这里我主要讲如果没有勾选那个选项,后续该如何操作。

       实际上,Ubuntu为我们提供了可以下载NVIDIA显卡驱动的地方,打开“软件与更新”,点击“附加驱动”,此时会看到目前使用的显卡驱动是“使用X.Org X server - Nouveau display driver 来自 xserver-xorg-video-nouveau(开源)”,我们从中选择一个NVIDIA的专有驱动就好,比如我选择的是“nvidia-driver-470(专有)”,其中的470表示驱动版本,建议不要选太高,如图:

       点击“应用更改(A)”即可,少等片刻,此时会系统会自动安装NVIDIA的显卡驱动替换掉原来的nouvean显卡驱动。

二、安装CUDA

      2006年,NVIDIA公司发布了CUDA(Compute Unified Device Architecture),是一种新的操作GPU计算的硬件和软件架构,是建立在NVIDIA的GPUs上的一个通用并行计算平台和编程模型,它提供了GPU编程的简易接口,基于CUDA编程可以构建基于GPU计算的应用程序,利用GPUs的并行计算引擎来更加高效地解决比较复杂的计算难题。它将GPU视作一个数据并行计算设备,而且无需把这些计算映射到图形API。操作系统的多任务机制可以同时管理CUDA访问GPU和图形程序的运行库,其计算特性支持利用CUDA直观地编写GPU核心程序。CUDA提供了对其它编程语言的支持,如C/C++,Python,Fortran等语言。只有安装CUDA才能够进行复杂的并行计算。

       CUDA版本要根据自己安装的显卡驱动来进行选择,打开一个终端,输入“nvidia-smi”可以查看显卡的信息,如图:

       其中Driver Version: 470.223.02表示显卡驱动版本,CUDA Version: 11.4表示支持的CUDA版本最高为11.4(高版本的CUDA能向下兼容),172MiB / 5944MiB分子表示目前使用的显存,分母表示显卡总显存,大概为6G。

       在CUDA Toolkit Archive | NVIDIA Developer下载CUDA安装包,我选择的是CUDA Toolkit 11.4.0,如图:

       操作系统选择Linux,架构选择x86_64,平台选择Ubuntu,我电脑装的是Ubuntu20.04,因此版本我选择20.04,安装方式选择runfile(local),然后下面会根据前面的选择生成安装命令,如图:

       终端执行第一条命令下载“cuda_11.4.0_470.42.01_linux.run”文件,如图:

       终端执行第二条命令回车安装CUDA显卡驱动,稍等片刻进入以下界面:

 选择“continue”后回车,进入下面界面:

输入“accept”后回车,进入下面界面:

因为我们之前已经安装了显卡驱动,因此需要点击空格键去掉安装显卡驱动的选项,然后选择install并回车。

前面密码我们已经输过,因此不用下意识输入密码,需要在这个界面等一会儿:

然后终端打印日志,完成CUDA安装: 

 此时可在终端输入命令nvcc -V查看cuda信息,可以看到:

这并不是因为系统没有安装CUDA,而是环境中没有罢了。千万不要执行sudo apt install nvidia-cuda-toolkit,否则可能会重新安装一个版本。而是需要配置CUDA的环境变量,输入gedit ~/.bashrc命令打开文件,在文件结尾输入以下语句,保存并source ~/.bashrc更新环境变量。

export PATH=/usr/local/cuda-11.4/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11.4/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

再次输入nvcc -V查看即可显示CUDA的版本:

至此,CUDA安装完成。

       然后可以测试一下CUDA。系统安装CUDA包括两个部分:NVIDIA CUDA GPU计算工具包NVIDIA CUD示例包两个部分。

       如下图所示,Ubuntu20.04系统会默认地将CUDA的NVIDIA GPU计算工具包安装到/usr/local/文件夹下面,可以看到该文件夹下多了两个文件夹cuda和cuda-11.4。

       对CUDA安装是否成功,需要进入NVIDIA CUDA示例包,其位于/home/fish/NVIDIA_CUDA-11.4_Samples内,在该文件夹下打开终端,并输入make。然后进入1_Utilities/deviceQuery文件夹,并在终端执行./deviceQuery 命令,如下result=PASS则表示安装成功。

三、安装cuDNN

       cuDNN是NVIDIA打造的针对深度神经网络的加速库,是一个用于深层神经网络的GPU加速库。如果要用GPU训练模型,cuDNN不是必须的,但是一般会采用这个加速库。

       需要根据自己的CUDA版本安装对应的cuDNN,因此需要先安装CUDA才能安装cuDNN,点击Log in | NVIDIA Developer登录后可直接进入官网,我的CUDA版本为11.4,所以我选择了CUDA版本为11.4版本对应的cuDNN,如图下载Local Installer for Linux x86_64 (Tar):

       对下载的cudnn-linux-x86_64-8.9.6.50_cuda11-archive.tar.xz进行解压操作(右键“提取到此处”即可),然后进入文件夹:

cd cudnn-linux-x86_64-8.9.6.50_cuda11-archive/

        执行下面两个命令,复制文件:

sudo cp -d -r ./lib/* /usr/local/cuda-11.4/lib64/
sudo cp -r ./include/* /usr/local/cuda-11.4/include/

        赋予权限:

sudo chmod a+r /usr/local/cuda-11.4/include/cudnn.h /usr/local/cuda-11.4/lib64/libcudnn*

        查看信息:

cat /usr/local/cuda-11.4/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

四、安装Anaconda

       在Free Download | Anaconda下载最新版Anaconda的.sh启动文件,本文我用的是Anaconda3-2023.09-0-Linux-x86_64.sh,在Anaconda3-2023.09-0-Linux-x86_64.sh所在目录执行以下命令:

bash Anaconda3-2023.09-0-Linux-x86_64.sh

全程选择enter或者yes即可,下图证明安装完成:

此时新建一个终端,会直接进入base环境:

五、Anaconda的简单使用

5.1 管理环境

(1)创建虚拟环境

conda create -n env_name python=3.8

这表示创建python版本为3.8、名字为env_name的虚拟环境。

       创建后,env_name文件可以在Anaconda安装目录envs文件下找到。在不指定python版本时,自动创建基于最新python版本的虚拟环境。

(2)查看有哪些虚拟环境

conda env list

        所显示的列表中,前面带星号“*“的表示当前活动环境,如图:

(3)激活虚拟环境

conda activate env_name

(4)退出虚拟环境

conda deactivate

(5)删除虚拟环境

       执行以下命令可以将该指定虚拟环境及其中所安装的包都删除:

conda remove --name env_name --all

       如果只删除虚拟环境中的某个或者某些包则是:

conda remove --name env_name  package_name

(6)导出虚拟环境

       很多的软件依赖特定的环境,我们可以导出环境,这样方便自己在需要时恢复环境,也可以提供给别人用于创建完全相同的环境。

#获得环境中的所有配置
conda env export --name myenv > myenv.yml
#重新还原环境
conda env create -f  myenv.yml

5.2 管理包(package)

(1)查询看当前环境中安装了哪些包

conda list

(2)包的安装和更新

       在当前(虚拟)环境中安装一个包:

conda install package_name

       也可以用以下命令安装某个特定版本的包(以下例为安装0.20.3版本的numpy):

conda install numpy=0.20.3

       可以用以下命令将某个包更新到它的最新版本:

conda update numpy

(3)包的卸载

conda uninstall package_name

这样会将依赖于这个包的所有其它包也同时卸载。

5.3 conda install 与 pip install

感谢博主笨牛慢耕的分享,这一部分参考他的博客:

【精选】Anaconda conda常用命令:从入门到精通_conda命令_笨牛慢耕的博客-CSDN博客文章浏览阅读6.4w次,点赞149次,收藏719次。简要介绍Anaconda conda的常用命令的使用,掌握了这些基本命令应该足以应付日常的‘生活自理’吧_conda命令https://blog.csdn.net/chenxy_bwave/article/details/119996001#:~:text=Anaconda%20conda%E5%B8%B8%E7%94%A8%E5%91%BD%E4%BB%A4%EF%BC%9A%E4%BB%8E%E5%85%A5%E9%97%A8%E5%88%B0%E7%B2%BE%E9%80%9A%201%201.%20%E5%89%8D%E8%A8%80%20Conda%E6%98%AFAnaconda%E4%B8%AD%E4%B8%80%E4%B8%AA%E5%BC%BA%E5%A4%A7%E7%9A%84%E5%8C%85%E5%92%8C%E7%8E%AF%E5%A2%83%E7%AE%A1%E7%90%86%E5%B7%A5%E5%85%B7%EF%BC%8C%E5%8F%AF%E4%BB%A5%E5%9C%A8Windows%E7%9A%84Anaconda%20Prompt%E5%91%BD%E4%BB%A4%E8%A1%8C%E4%BD%BF%E7%94%A8%EF%BC%8C%E4%B9%9F%E5%8F%AF%E4%BB%A5%E5%9C%A8macOS%E6%88%96%E8%80%85Linux%E7%B3%BB%E7%BB%9F%E7%9A%84%E7%BB%88%E7%AB%AF%E7%AA%97%E5%8F%A3%20%28terminal,%E7%9A%84%E7%AE%A1%E7%90%86%204.1%20%E6%9F%A5%E8%AF%A2%E5%8C%85%E7%9A%84%E5%AE%89%E8%A3%85%E6%83%85%E5%86%B5%20...%205%205.%20Python%E7%89%88%E6%9C%AC%E7%9A%84%E7%AE%A1%E7%90%86%20%E9%99%A4%E4%BA%86%E4%B8%8A%E9%9D%A2%E5%9C%A8%E5%88%9B%E5%BB%BA%E8%99%9A%E7%8E%AF%E5%A2%83%E6%97%B6%E5%8F%AF%E4%BB%A5%E6%8C%87%E5%AE%9Apython%E7%89%88%E6%9C%AC%E5%A4%96%EF%BC%8CAnaconda%E5%9F%BA%E7%8E%AF%E5%A2%83%E7%9A%84python%E7%89%88%E6%9C%AC%E4%B9%9F%E5%8F%AF%E4%BB%A5%E6%A0%B9%E6%8D%AE%E9%9C%80%E8%A6%81%E8%BF%9B%E8%A1%8C%E6%9B%B4%E6%94%B9%E3%80%82(1)两者区别

       conda可以管理非python包,pip只能管理python包。
       conda自己可以用来创建环境,pip不能,需要依赖virtualenv之类的。
       conda安装的包是编译好的二进制文件,安装包文件过程中会自动安装依赖包;pip安装的包是wheel或源码,装过程中不会去支持python语言之外的依赖项。
       conda安装的包会统一下载到一个目录文件中,当环境B需要下载的包,之前其他环境安装过,就只需要把之间下载的文件复制到环境B中,下载一次多次安装。pip是直接下载到对应环境中。
       conda只能在conda管理的环境中使用,例如比如conda所创建的虚环境中使用。pip可以在任何环境中使用,在conda创建的环境 中使用pip命令,需要先安装pip(conda install pip ),然后可以 环境A 中使用pip 。conda 安装的包,pip可以卸载,但不能卸载依赖包,pip安装的包,只能用pip卸载。

(2)能否混用

       首先,不建议混用。混用容易导致库的依赖关系出现混乱,然后突然哪天环境可能就崩了,安装不了新的包,无法进行conda update之类的。

       其次,由于conda的库确实不如pip的库丰富{很多包只在 pip 有:PYPI有15万可用包,而Anaconda repository中(使用conda命令安装)提供了1,500多个软件包,Anaconda cloud上(使用conda-forge或bioconda命令安装)的几千种其他软件包。所以有时候可能迫不得已要使用pip安装。切记,只有在conda install搞不定时才使用pip intall。 而且,最后使用虚拟环境进行环境隔离。

(3)安装在哪里

       conda install xxx:这种方式安装的库都会放在anaconda3/pkgs目录下,这样的好处就是,当在某个环境下已经下载好了某个库,再在另一个环境中还需要这个库时,就可以直接从pkgs目录下将该库复制至新环境而不用重复下载。
       pip install xxx:分两种情况,一种情况就是当前conda环境的python是conda安装的,和系统的不一样,那么xxx会被安装到anaconda3/envs/current_env/lib/python3.x/site-packages文件夹中,如果当前conda环境用的是系统的python,那么xxx会通常会被安装到~/.local/lib/python3.x/site-packages文件夹中。

(4)如何判断conda中的某个包是通过conda还是pip安装的(windows)

       执行​conda list,用pip安装的包显示的build项目为pypi。如下图所示:

5.4 conda configuration

       conda的配置文件为".condarc",该文件在安装时不是缺省存在的。但是当你第一次运行conda config命令时它就被自动创建了。".condarc"配置文件遵循简单的YAML语法。

(1)condarc文件在哪里

       执行conda info,会有信息显示如下所示:

(2)Channel管理

       追加conda-forge channel:

conda config --add channels conda-forge

       移除conda-forge channel:

conda config --remove channels conda-forge

       查询当前配置中包含哪些channels:

conda config --get channels

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/143704.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【SA8295P 源码分析】121 - MAX9295A 加串器芯片手册分析 及初始化参数分析

【SA8295P 源码分析】121 - MAX9295A 加串器芯片手册分析 及初始化参数分析 一、MAX9295A 芯片特性1.1 GPIO 引脚说明1.2 功能模块框图1.3 时序分析1.3.1 GMSL2 Lock Time:25 ms1.3.2 视频初始化延时:1.1ms + 17000 x t(PCLK)1.3.3 High-Speed Data Transmission in Bursts1.…

Postman配置环境请求接口

一、准备配置dev、test、demo、eprod 二、使用切换环境变量调用接口 三、使用登录接口自动获取token

仿京东拼多多商品分类页-(RecyclerView悬浮头部实现、xml绘制ItemDecoration)

文章目录 前言效果图思路方式一:通过xml布局来实现方式二:通过ItemDecoration方式来实现 实现步骤1、数据项格式2、左侧列表适配器3、右侧列表适配器4、头部及悬浮头部绘制4.1头部偏移高度为要绘制xml布局的高度--getItemOffsets()4.2 绘制固定头部--onD…

MAT工具定位分析Java堆内存泄漏问题方法

原创/朱季谦 一、MAT概述与安装 MAT,全称Memory Analysis Tools,是一款分析Java堆内存的工具,可以快速定位到堆内泄漏问题。该工具提供了两种使用方式,一种是插件版,可以安装到Eclipse使用,另一种是独立版…

【python 生成器 面试必备】yield关键字,协程必知必会系列文章--自己控制程序调度,体验做上帝的感觉 1

python生成器系列文章目录 第一章 yield — Python (Part I) 文章目录 python生成器系列文章目录前言1. Generator Function 生成器函数2.并发和并行,抢占式和协作式2.Let’s implement Producer/Consumer pattern using subroutine: 生成器的状态 generator’s st…

聊聊logback的DynamicThresholdFilter

序 本文主要研究一下logback的DynamicThresholdFilter DynamicThresholdFilter public class DynamicThresholdFilter extends TurboFilter {private Map<String, Level> valueLevelMap new HashMap<String, Level>();private Level defaultThreshold Level.E…

ESP32网络开发实例-BME280传感器数据保存到InfluxDB时序数据库

BME280传感器数据保存到InfluxDB时序数据库 文章目录 BME280传感器数据保存到InfluxDB时序数据库1、BM280和InfluxDB介绍2、软件准备3、硬件准备4、代码实现在本文中,将详细介绍如何将BME280传感器数据上传到InfluxDB中,方便后期数据处理。 1、BM280和InfluxDB介绍 InfluxDB…

tracert命令

前言&#xff1a;今天在阅读“Web性能权威指南”这本书的时候&#xff0c;发现 tracert 这个命令挺有意思的&#xff0c;在分析网络性能瓶颈的时候也能使用的到&#xff0c;在此就小记一笔以备后用。 1&#xff1a;作用 tracert 是一个简单的网络诊断工具&#xff0c;可以列出…

如何在Windows 10中进行屏幕截图

本文介绍如何在Windows 10中捕获屏幕截图&#xff0c;包括使用键盘组合、使用Snipping Tool、Snipp&Sketch Tool或Windows游戏栏。 使用打印屏幕在Windows 10中捕获屏幕截图 在Windows 10中捕获屏幕截图的最简单方法是按下键盘上的PrtScWindows键盘组合。你将看到屏幕短暂…

python自动化第一篇—— 带图文的execl的自动化合并

简述 最近接到一个需求&#xff0c;需要为公司里的一个部门提供一个文件上传自动化合并的系统&#xff0c;以供用户稽核&#xff0c;谈到自动化&#xff0c;肯定是选择python&#xff0c;毕竟python的轮子多。比较了市面上几个用得多的python库&#xff0c;我最终选择了xlwings…

centos 6.10 安装 python3.10.5 和 openssl1.1.1

安装 openssl centos 6.10 自带的 openssl 版本太老了&#xff0c;要安装 1.0.2以上的版本。 如果不安装 openssl&#xff0c;python 的 pip 无法联网。 下载 wget https://link.juejin.cn/?targethttps%3A%2F%2Fwww.openssl.org%2Fsource%2Fopenssl-1.1.1h.tar.gz如果虚拟…

Rust5.2 Generic Types, Traits, and Lifetimes

Rust学习笔记 Rust编程语言入门教程课程笔记 参考教材: The Rust Programming Language (by Steve Klabnik and Carol Nichols, with contributions from the Rust Community) Lecture 10: Generic Types, Traits, and Lifetimes lib.rs use std::fmt::Display;//Traits: …

8. 深度学习——NLP

机器学习面试题汇总与解析——NLP 本章讲解知识点 什么是 NLP循环神经网络(RNN)RNN 变体Attention 机制RNN 反向传播推导LSTM 与 GRUTransformerBertGPT分词算法分类CBOW 模型与 Skip-Gram 模型本专栏适合于Python已经入门的学生或人士,有一定的编程基础。本专栏适合于算法…

Nginx(五) break,if,return,rewrite和set指令的执行顺序深究

本篇文章主要对break&#xff0c;if&#xff0c;return&#xff0c;rewrite和set这5个指令的执行顺序进行深究&#xff0c;如需了解这5个指令的功能和配置&#xff0c;请参考另一篇文章 Nginx(三) 配置文件详解 由于文章篇幅较长&#xff0c;所以我就先把结论贴出来&#xff0c…

将按键放到输入框内:

如何将将Button放到输入框内&#xff1f; 效果图&#xff1a; 步骤如下&#xff1a; button 外围用template 包裹一层 <template #suffix v-if"row.WorkerRole TPM"> <el-inputtype"text"v-model"row.JobNumber"placeholder"…

云原生下GIS服务规划与设计

作者&#xff1a;lisong 目录 背景云原生环境下GIS服务的相关概念GIS服务在云原生环境下的规划调度策略GIS服务在云原生环境下的调度手段GIS服务在云原生环境下的服务规划调度实践 背景 作为云原生GIS系统管理人员&#xff0c;在面对新建的云GIS系统时&#xff0c;通常需要应对…

第27期 | GPTSecurity周报

GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区&#xff0c;集成了生成预训练Transformer&#xff08;GPT&#xff09;、人工智能生成内容&#xff08;AIGC&#xff09;以及大型语言模型&#xff08;LLM&#xff09;等安全领域应用的知识。在这里&#xff0c;您可以…

使用 PYTORCH 进行图像风格迁移

一、介绍 本教程介绍如何实现 由 Leon A. Gatys、Alexander S. Ecker 和 Matthias Bethge 开发的神经风格算法。神经风格或神经传输允许您拍摄图像并以新的艺术风格再现它。该算法采用三幅图像&#xff0c;即输入图像、内容图像和风格图像&#xff0c;并将输入更改为类似于内容…

Python框架篇(1):FastApi-快速入门

1.介绍 前言: 不管学什么语言&#xff0c;都应该至少掌握一个框架&#xff0c;方面我们后续&#xff0c;进行服务部署、服务对外支持等; 1.1 官网介绍 下面是来自FastAPI官网的介绍: FastAPI 是一个用于构建 API 的现代、快速&#xff08;高性能&#xff09;的 web 框架&#…

为忙碌的软件工程师精心准备的编码面试准备材料,超过 100,000 人受益!

这是一个针对技术面试准备的手册。它收集了大量的面试问题和答案&#xff0c;涵盖了算法、系统设计、前端等主题&#xff0c;并且还在不断更新和完善中。 这个项目是“Tech Interview Handbook”&#xff0c;解决了求职者在技术面试中遇到的各种难题&#xff0c;帮助他们更好地…