竞赛 题目:垃圾邮件(短信)分类 算法实现 机器学习 深度学习 开题

文章目录

  • 1 前言
  • 2 垃圾短信/邮件 分类算法 原理
    • 2.1 常用的分类器 - 贝叶斯分类器
  • 3 数据集介绍
  • 4 数据预处理
  • 5 特征提取
  • 6 训练分类器
  • 7 综合测试结果
  • 8 其他模型方法
  • 9 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

基于机器学习的垃圾邮件分类

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 垃圾短信/邮件 分类算法 原理

垃圾邮件内容往往是广告或者虚假信息,甚至是电脑病毒、情色、反动等不良信息,大量垃圾邮件的存在不仅会给人们带来困扰,还会造成网络资源的浪费;

网络舆情是社会舆情的一种表现形式,网络舆情具有形成迅速、影响力大和组织发动优势强等特点,网络舆情的好坏极大地影响着社会的稳定,通过提高舆情分析能力有效获取发布舆论的性质,避免负面舆论的不良影响是互联网面临的严肃课题。

将邮件分为垃圾邮件(有害信息)和正常邮件,网络舆论分为负面舆论(有害信息)和正面舆论,那么,无论是垃圾邮件过滤还是网络舆情分析,都可看作是短文本的二分类问题。

在这里插入图片描述

2.1 常用的分类器 - 贝叶斯分类器

贝叶斯算法解决概率论中的一个典型问题:一号箱子放有红色球和白色球各 20 个,二号箱子放油白色球 10 个,红色球 30
个。现在随机挑选一个箱子,取出来一个球的颜色是红色的,请问这个球来自一号箱子的概率是多少?

利用贝叶斯算法识别垃圾邮件基于同样道理,根据已经分类的基本信息获得一组特征值的概率(如:“茶叶”这个词出现在垃圾邮件中的概率和非垃圾邮件中的概率),就得到分类模型,然后对待处理信息提取特征值,结合分类模型,判断其分类。

贝叶斯公式:

P(B|A)=P(A|B)*P(B)/P(A)

P(B|A)=当条件 A 发生时,B 的概率是多少。代入:当球是红色时,来自一号箱的概率是多少?

P(A|B)=当选择一号箱时,取出红色球的概率。

P(B)=一号箱的概率。

P(A)=取出红球的概率。

代入垃圾邮件识别:

P(B|A)=当包含"茶叶"这个单词时,是垃圾邮件的概率是多少?

P(A|B)=当邮件是垃圾邮件时,包含“茶叶”这个单词的概率是多少?

P(B)=垃圾邮件总概率。

P(A)=“茶叶”在所有特征值中出现的概率。

在这里插入图片描述

3 数据集介绍

使用中文邮件数据集:丹成学长自己采集,通过爬虫以及人工筛选。

数据集“data” 文件夹中,包含,“full” 文件夹和 “delay” 文件夹。

“data” 文件夹里面包含多个二级文件夹,二级文件夹里面才是垃圾邮件文本,一个文本代表一份邮件。“full” 文件夹里有一个 index
文件,该文件记录的是各邮件文本的标签。

在这里插入图片描述

数据集可视化:

在这里插入图片描述

4 数据预处理

这一步将分别提取邮件样本和样本标签到一个单独文件中,顺便去掉邮件的非中文字符,将邮件分好词。

邮件大致内容如下图:

在这里插入图片描述

每一个邮件样本,除了邮件文本外,还包含其他信息,如发件人邮箱、收件人邮箱等。因为我是想把垃圾邮件分类简单地作为一个文本分类任务来解决,所以这里就忽略了这些信息。
用递归的方法读取所有目录里的邮件样本,用 jieba 分好词后写入到一个文本中,一行文本代表一个邮件样本:

import re
import jieba
import codecs
import os 
# 去掉非中文字符
def clean_str(string):string = re.sub(r"[^\u4e00-\u9fff]", " ", string)string = re.sub(r"\s{2,}", " ", string)return string.strip()def get_data_in_a_file(original_path, save_path='all_email.txt'):files = os.listdir(original_path)for file in files:if os.path.isdir(original_path + '/' + file):get_data_in_a_file(original_path + '/' + file, save_path=save_path)else:email = ''# 注意要用 'ignore',不然会报错f = codecs.open(original_path + '/' + file, 'r', 'gbk', errors='ignore')# lines = f.readlines()for line in f:line = clean_str(line)email += linef.close()"""发现在递归过程中使用 'a' 模式一个个写入文件比 在递归完后一次性用 'w' 模式写入文件快很多"""f = open(save_path, 'a', encoding='utf8')email = [word for word in jieba.cut(email) if word.strip() != '']f.write(' '.join(email) + '\n')print('Storing emails in a file ...')
get_data_in_a_file('data', save_path='all_email.txt')
print('Store emails finished !')

然后将样本标签写入单独的文件中,0 代表垃圾邮件,1 代表非垃圾邮件。代码如下:

def get_label_in_a_file(original_path, save_path='all_email.txt'):f = open(original_path, 'r')label_list = []for line in f:# spamif line[0] == 's':label_list.append('0')# hamelif line[0] == 'h':label_list.append('1')f = open(save_path, 'w', encoding='utf8')f.write('\n'.join(label_list))f.close()print('Storing labels in a file ...')
get_label_in_a_file('index', save_path='label.txt')
print('Store labels finished !')

5 特征提取

将文本型数据转化为数值型数据,本文使用的是 TF-IDF 方法。

TF-IDF 是词频-逆向文档频率(Term-Frequency,Inverse Document Frequency)。公式如下:

在这里插入图片描述

在所有文档中,一个词的 IDF 是一样的,TF 是不一样的。在一个文档中,一个词的 TF 和 IDF
越高,说明该词在该文档中出现得多,在其他文档中出现得少。因此,该词对这个文档的重要性较高,可以用来区分这个文档。

在这里插入图片描述

import jieba
from sklearn.feature_extraction.text import TfidfVectorizerdef tokenizer_jieba(line):# 结巴分词return [li for li in jieba.cut(line) if li.strip() != '']def tokenizer_space(line):# 按空格分词return [li for li in line.split() if li.strip() != '']def get_data_tf_idf(email_file_name):# 邮件样本已经分好了词,词之间用空格隔开,所以 tokenizer=tokenizer_spacevectoring = TfidfVectorizer(input='content', tokenizer=tokenizer_space, analyzer='word')content = open(email_file_name, 'r', encoding='utf8').readlines()x = vectoring.fit_transform(content)return x, vectoring

6 训练分类器

这里学长简单的给一个逻辑回归分类器的例子

from sklearn.linear_model import LogisticRegression
from sklearn import svm, ensemble, naive_bayes
from sklearn.model_selection import train_test_split
from sklearn import metrics
import numpy as npif __name__ == "__main__":np.random.seed(1)email_file_name = 'all_email.txt'label_file_name = 'label.txt'x, vectoring = get_data_tf_idf(email_file_name)y = get_label_list(label_file_name)# print('x.shape : ', x.shape)# print('y.shape : ', y.shape)# 随机打乱所有样本index = np.arange(len(y))  np.random.shuffle(index)x = x[index]y = y[index]# 划分训练集和测试集x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)clf = svm.LinearSVC()# clf = LogisticRegression()# clf = ensemble.RandomForestClassifier()clf.fit(x_train, y_train)y_pred = clf.predict(x_test)print('classification_report\n', metrics.classification_report(y_test, y_pred, digits=4))print('Accuracy:', metrics.accuracy_score(y_test, y_pred))

7 综合测试结果

测试了2000条数据,使用如下方法:

  • 支持向量机 SVM

  • 随机数深林

  • 逻辑回归
    在这里插入图片描述

可以看到,2000条数据训练结果,200条测试结果,精度还算高,不过数据较少很难说明问题。

8 其他模型方法

还可以构建深度学习模型

在这里插入图片描述

网络架构第一层是预训练的嵌入层,它将每个单词映射到实数的N维向量(EMBEDDING_SIZE对应于该向量的大小,在这种情况下为100)。具有相似含义的两个单词往往具有非常接近的向量。

第二层是带有LSTM单元的递归神经网络。最后,输出层是2个神经元,每个神经元对应于具有softmax激活功能的“垃圾邮件”或“正常邮件”。

def get_embedding_vectors(tokenizer, dim=100):embedding_index = {}with open(f"data/glove.6B.{dim}d.txt", encoding='utf8') as f:for line in tqdm.tqdm(f, "Reading GloVe"):values = line.split()word = values[0]vectors = np.asarray(values[1:], dtype='float32')embedding_index[word] = vectorsword_index = tokenizer.word_indexembedding_matrix = np.zeros((len(word_index)+1, dim))for word, i in word_index.items():embedding_vector = embedding_index.get(word)if embedding_vector is not None:# words not found will be 0sembedding_matrix[i] = embedding_vectorreturn embedding_matrixdef get_model(tokenizer, lstm_units):"""Constructs the model,Embedding vectors => LSTM => 2 output Fully-Connected neurons with softmax activation"""# get the GloVe embedding vectorsembedding_matrix = get_embedding_vectors(tokenizer)model = Sequential()model.add(Embedding(len(tokenizer.word_index)+1,EMBEDDING_SIZE,weights=[embedding_matrix],trainable=False,input_length=SEQUENCE_LENGTH))model.add(LSTM(lstm_units, recurrent_dropout=0.2))model.add(Dropout(0.3))model.add(Dense(2, activation="softmax"))# compile as rmsprop optimizer# aswell as with recall metricmodel.compile(optimizer="rmsprop", loss="categorical_crossentropy",metrics=["accuracy", keras_metrics.precision(), keras_metrics.recall()])model.summary()return model

训练结果如下:

_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding_1 (Embedding) (None, 100, 100) 901300
_________________________________________________________________
lstm_1 (LSTM) (None, 128) 117248
_________________________________________________________________
dropout_1 (Dropout) (None, 128) 0
_________________________________________________________________
dense_1 (Dense) (None, 2) 258
=================================================================
Total params: 1,018,806
Trainable params: 117,506
Non-trainable params: 901,300
_________________________________________________________________
X_train.shape: (4180, 100)
X_test.shape: (1394, 100)
y_train.shape: (4180, 2)
y_test.shape: (1394, 2)
Train on 4180 samples, validate on 1394 samples
Epoch 1/20
4180/4180 [==============================] - 9s 2ms/step - loss: 0.1712 - acc: 0.9325 - precision: 0.9524 - recall: 0.9708 - val_loss: 0.1023 - val_acc: 0.9656 - val_precision: 0.9840 - val_recall: 0.9758Epoch 00001: val_loss improved from inf to 0.10233, saving model to results/spam_classifier_0.10
Epoch 2/20
4180/4180 [==============================] - 8s 2ms/step - loss: 0.0976 - acc: 0.9675 - precision: 0.9765 - recall: 0.9862 - val_loss: 0.0809 - val_acc: 0.9720 - val_precision: 0.9793 - val_recall: 0.9883

在这里插入图片描述

9 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/142895.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

技术贴 | SQL 执行 - 执行器优化

本期技术贴主要介绍查询执行引擎的优化。查询执行引擎负责将 SQL 优化器生成的执行计划进行解释,通过任务调度执行从存储引擎里面把数据读取出来,计算出结果集,然后返回给客户。 在关系型数据库发展的早期,受制于计算机 IO 能力的…

前端JS解构数组对象

// 3. 对象数组解构const arr [{username: 小明,age: 18,agw:19},{username: 小ha,age: 18,agw:19}]arr.map(item>item.age)//js结构数组对象console.log( arr.map(item>{return {aaa:item.age,bbb:item.username}}))

搜维尔科技:【软件篇】TechViz是一款专为工程设计的专业级3D可视化软件

在沉浸式房间内深入研究您自己的 3D 数据 沉浸式房间是一个交互式虚拟现实空间,其中每个表面(墙壁、地板和天花板)都充当投影屏幕,创造高度沉浸式的体验。这就像您的 3D 模型有一个窗口,您可以在其中从不同角度走动、…

bclinux aarch64 ceph 14.2.10 文件存储 Ceph File System, 需要部署mds: ceph-deploy mds

创建池 [rootceph-0 ~]# ceph osd pool create cephfs_data 64 pool cephfs_data created [rootceph-0 ~]# ceph osd pool create cephfs_metadata 32 pool cephfs_metadata created cephfs_metadata 64 报错 官方说明: 元数据池通常最多可容纳几 GB 的数据。为…

haproxy端口耗尽no free ports

用haproxy配置负载均衡时出现端口不足错误;后端服务连接一会高一会儿低,从0到1w、2w跳变;实际连接数为4w左右; haproxy[8765]: Connect() failed for backend 09e581: no free ports. 问题描述 在请求很少的时候,工作…

人工智能与大数据:驱动现代业务转型的双引擎

在当今数字化时代,人工智能(AI)和大数据已成为驱动业务和技术创新的关键力量。它们的结合不仅重塑了传统行业,也催生了新的商业模式和服务方式。 AI与大数据在零售行业的应用 在零售行业,AI和大数据的应用已经成为提…

排序 算法(第4版)

本博客参考算法(第4版):算法(第4版) - LeetBook - 力扣(LeetCode)全球极客挚爱的技术成长平台 本文用Java实现相关算法。 我们关注的主要对象是重新排列数组元素的算法,其中每个元素…

No208.精选前端面试题,享受每天的挑战和学习

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…

echarts官网卡?

全网echarts案例资源大总结和echarts的高效使用技巧(细节版) - 掘金 drawnLine() {let myChart echarts.init(document.getElementById("grade"));// 绘制图表myChart.setOption({title: {left: "center",},tooltip: {trigger: &qu…

数字孪生智慧园区:大数据驱动下的运营管理革新

随着物联网、大数据、云计算等技术的飞速发展,数字孪生技术应运而生,它将物理世界与数字世界紧密连接起来,为各行各业提供了前所未有的解决方案。智慧园区作为城市的重要组成部分,通过数字孪生技术,可以实现更加高效、…

如何在 Windows 10/11 上高质量地将 WAV 转换为 MP3

WAV 几乎完全准确地存储了录音硬件所听到的内容,这使得它变得很大并占用了更多的存储空间。因此,WAV 格式在作为电子邮件附件发送、保存在便携式音频播放器上、通过蓝牙或互联网从一台设备传输到另一台设备等时可能无法正常工作。 如果您遇到 WAV 问题&…

数据库数据恢复—MSSQL报错“附加数据库错误823”如何恢复数据?

数据库故障&分析: MSSQL Server数据库比较常见的报错是“附加数据库错误823”。如果数据库有备份,只需要还原备份即可;如果无备份或者备份不可用,则需要使用专业的数据恢复手段去恢复数据。 MSSQL Server数据库出现“823”的报…

1.jvm基本知识

目录 概述jvm虚拟机三问jvm是什么?java 和 jvm 的关系 为什么学jvm怎么学习为什么jvm调优?什么时候jvm调优调优调什么 结束 概述 相关文章在此总结如下: 文章地址jvm类加载系统地址双亲委派模型与打破双亲委派地址运行时数据区地址运行时数据区-字符串…

理工ubuntu20.04电脑配置记录

8188gu无线网卡配置 首先下载github上的文件,进入文件夹 安装make命令 1. 查看usb无线网卡 sudo lsusb|grep 8188 2. 环境准备 sudo apt-get install git make build-essential git dkms linux-headers-$(uname -r) 3. 编译安装 git clone https://github.com…

敏感数据是什么?包含哪些?如何保障安全?

最近看到不少小伙伴在问,敏感数据是什么?包含哪些?如何保障安全?这里我们小编就给大家一一解答一下,仅供参考哦! 敏感数据是什么? 敏感数据,是指泄漏后可能会给社会或个人带来严重危…

UE5、CesiumForUnreal实现加载GeoJson绘制墙体(Wall)功能(StaticMesh方式)

文章目录 1.实现目标2.实现过程2.1 实现原理2.2 具体代码2.3 应用测试2.3.1 流动材质2.3.2 蓝图测试3.参考资料1.实现目标 与上一篇以StaticMesh方式实现面类似,本文通过读取GeoJson数据,在UE中以StaticMeshComponent的形式绘制出墙体数据,并支持Editor和Runtime,在Editor下…

C#中.NET Framework 4.8控制台应用通过EF访问已建数据库

目录 一、创建.NET Framework 4.8控制台应用 二、建立数据库 1. 在SSMS中建立数据库Blogging 2.在VS上新建数据库连接 三、安装EF程序包 四、自动生成EF模型和上下文 1.Blog.cs类的模型 2.Post.cs类的模型 3.BloggingContext.cs数据库上下文 五、编写应用程序吧 我们…

流量分析(5.5信息安全铁人三项赛数据赛题解)

黑客通过外部的web服务器攻击到企业内部的系统中,并留下了web后门,通过外部服务器对内部进行了攻击。 目录 黑客攻击的第一个受害主机的网卡IP地址 黑客对URL的哪一个参数实施了SQL注入 第一个受害主机网站数据库的表前缀(加上下划线 例如abc_) 第一…

哔哩哔哩自动引流软件的运行分享,以及涉及到技术与核心代码分享

先来看实操成果,↑↑需要的同学可看我名字↖↖↖↖↖,或评论888无偿分享 大家好,我是一名专注于自动引流软件研发的技术专家。今天,我将与大家分享自动引流软件涉及到的技术与核心代码,希望能为大家提供一些有价值的参…

【postgresql】查看数据中表的信息

切换到postgresql数据库,各种不适应吧。 有个需求需要查询数据表的各种信息。 下面我们一起学习吧。 ●PostgreSQL: Documentation PostgreSQL: Documentation ●pg_namespace 存储名字空间。名字空间是 SQL 模式下层的结构:每个名字空间有独立的关系…