【mysql学习篇】Order by与Group by优化以及排序算法详解

一、Order by与Group by优化

Case1:

在这里插入图片描述

分析: 利用最左前缀法则:中间字段不能断,因此查询用到了name索引,从key_len=74也能看出,age索引列用在排序过程中,因为Extra字段里没有using filesort

注意: order by age 虽然用到了索引,但是不会在key_len列体现

Case 2:

在这里插入图片描述

分析: 从explain的执行结果来看:key_len=74,查询使用了name索引,由于用了position进行排序,跳过了age,出现了Using filesort。

注意: 这里跳过了age,这里position是无序的,所以不会走索引

Case 3:

在这里插入图片描述

分析: 查找只用到索引name,age和position用于排序,无Using filesort。

Case 4:

在这里插入图片描述
分析: 和Case 3中explain的执行结果一样,但是出现了Using filesort,因为索引的创建顺序为name,age,position,但是排序的时候age和position颠倒位置了。

重点注意: 这边颠倒age和position,mysql不会像前面提到的where后面一样优化最左前缀

Case 5:

在这里插入图片描述

分析: 与Case 4对比,在Extra中并未出现Using filesort,因为age为 常量,在排序中被优化,所以索引未颠倒,不会出现Using filesort。

Case 6:

在这里插入图片描述

分析: 虽然排序的字段列与索引顺序一样,且order by默认升序,这里position desc变成了降序,导致与索引的排序方式不同,从而产生Using filesort。Mysql8以上版本有降序索引可以支持该种查询方式

Case 7:

在这里插入图片描述

分析: 对于排序来说,多个相等条件也是范围查询

Case 8:

在这里插入图片描述

可以用覆盖索引优化

在这里插入图片描述

二、Using filesort 文件排序原理详解

filesort文件排序方式

在使用explain分析查询的时候,利用有序索引获取有序数据显示Using index。如果MySQL在排序的时候没有使用到索引那么就会输出using filesort,即使用文件排序。

文件排序是通过相应的排序算法,将取得的数据在内存中进行排序:

  1. MySQL需要将数据在内存中进行排序,所使用的内存区域也就是我们通过sort_buffer_size系统变量所设置的sort buffer(排序区)。
  2. 这个sort buffer是每个Thread独享的,所以说可能在同一时刻在MySQL中可能存在多个sort buffer内存区域。

1. 双路排序(又叫回表排序模式)

  1. 首先根据相应的条件取出相应的 排序字段可以直接定位行数据的行 ID
  2. 然后在 sort buffer (内存排序)中进行排序,排序完后需要再次取回其它需要的字段;
  3. 用trace工具可以看到sort_mode信息里显示< sort_key, rowid >

第一遍扫描出需要排序的字段,然后进行排序后,根据排序结果,第二遍再扫描一下需要select的列数据。这样会引起大量的随机IO,效率不高,但是节约内存。排序使用quick sort,但是如果内存不够则会按照 block 进行排序,将排序结果写入磁盘文件,然后再将结果合并。

2. 单路排序

  1. 一次性取出满足条件行的 所有字段,然后在 sort buffer 内存中进行排序;
  2. 用trace工具可以看到sort_mode信息里显示< sort_key, additional_fields >或者< sort_key, packed_additional_fields >
  3. 不需要回表获取其他字段效率高,但将所有字段取出,在sort buffer中排序,占用内存

如何选择文件排序方式

MySQL 通过比较系统变量 max_length_for_sort_data(默认1024字节) 的大小和需要查询的字段总大小来判断使用哪种排序模式。

  1. 如果 字段的总长度小于max_length_for_sort_data ,那么使用 单路排序模式
  2. 如果 字段的总长度大于max_length_for_sort_data ,那么使用 双路排序模式

示例验证下各种排序方式:

在这里插入图片描述

查看下这条sql对应trace结果如下(只展示排序部分):

mysql> set session optimizer_trace="enabled=on",end_markers_in_json=on;  --开启trace
mysql> select * from employees where name = 'zhuge' order by position;
mysql> select * from information_schema.OPTIMIZER_TRACE;trace排序部分结果:
"join_execution": {    --Sql执行阶段"select#": 1,"steps": [{"filesort_information": [{"direction": "asc","table": "`employees`","field": "position"}] /* filesort_information */,"filesort_priority_queue_optimization": {"usable": false,"cause": "not applicable (no LIMIT)"} /* filesort_priority_queue_optimization */,"filesort_execution": [] /* filesort_execution */,"filesort_summary": {                      --文件排序信息"rows": 10000,                           --预计扫描行数"examined_rows": 10000,                  --参与排序的行"number_of_tmp_files": 3,                --使用临时文件的个数,这个值如果为0代表全部使用的sort_buffer内存排序,否则使用的磁盘文件排序"sort_buffer_size": 262056,              --排序缓存的大小,单位Byte"sort_mode": "<sort_key, packed_additional_fields>"       --排序方式,这里用的单路排序} /* filesort_summary */}] /* steps */} /* join_execution */mysql> set max_length_for_sort_data = 10;    --employees表所有字段长度总和肯定大于10字节
mysql> select * from employees where name = 'zhuge' order by position;
mysql> select * from information_schema.OPTIMIZER_TRACE;trace排序部分结果:
"join_execution": {"select#": 1,"steps": [{"filesort_information": [{"direction": "asc","table": "`employees`","field": "position"}] /* filesort_information */,"filesort_priority_queue_optimization": {"usable": false,"cause": "not applicable (no LIMIT)"} /* filesort_priority_queue_optimization */,"filesort_execution": [] /* filesort_execution */,"filesort_summary": {"rows": 10000,"examined_rows": 10000,"number_of_tmp_files": 2,"sort_buffer_size": 262136,   "sort_mode": "<sort_key, rowid>"         --排序方式,这里用的双路排序} /* filesort_summary */}] /* steps */} /* join_execution */mysql> set session optimizer_trace="enabled=off";    --关闭trace

我们先看单路排序的详细过程:

  1. 从索引name找到第一个满足 name = ‘zhuge’ 条件的主键 id
  2. 根据主键 id 取出整行,取出所有字段的值,存入 sort_buffer 中
  3. 从索引name找到下一个满足 name = ‘zhuge’ 条件的主键 id
  4. 重复步骤 2、3 直到不满足 name = ‘zhuge’
  5. 对 sort_buffer 中的数据按照字段 position 进行排序
  6. 返回结果给客户端

我们再看下双路排序的详细过程:

  1. 从索引 name 找到第一个满足 name = ‘zhuge’ 的主键id
  2. 根据主键 id 取出整行,把排序字段 position 和主键 id 这两个字段放到 sort buffer 中
  3. 从索引 name 取下一个满足 name = ‘zhuge’ 记录的主键 id
  4. 重复 3、4 直到不满足 name = ‘zhuge’
  5. 对 sort_buffer 中的字段 position 和主键 id 按照字段 position 进行排序
  6. 遍历排序好的 id 和字段 position,按照 id 的值回到原表中取出 所有字段的值返回给客户端

三、总结

  1. 其实对比两个排序模式,单路排序会把所有需要查询的字段都放到 sort buffer 中,而双路排序只会把主键和需要排序的字段放到 sort buffer 中进行排序,然后再通过主键回到原表查询需要的字段。

  2. 如果 MySQL 排序内存 sort_buffer 配置的比较小并且没有条件继续增加了,可以适当把 max_length_for_sort_data 配置小点,让优化器选择使用双路排序算法,可以在sort_buffer 中一次排序更多的行,只是需要再根据主键回到原表取数据。

  3. 如果 MySQL 排序内存有条件可以配置比较大,可以适当增大 max_length_for_sort_data 的值,让优化器优先选择全字段排序(单路排序),把需要的字段放到 sort_buffer 中,这样排序后就会直接从内存里返回查询结果了。

  4. 所以,MySQL通过 max_length_for_sort_data 这个参数来控制排序,在不同场景使用不同的排序模式,从而提升排序效率。

注意: 如果全部使用sort_buffer内存排序一般情况下效率会高于磁盘文件排序,但不能因为这个就随便增大sort_buffer(默认1M),mysql很多参数设置都是做过优化的,不要轻易调整。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/14123.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【LeetCode】二叉树的前序,中序,后序遍历

此题用递归做比较容易&#xff0c;然后根据前中后的遍历特点&#xff1a; 前序是根左右&#xff0c; 中序是左根右&#xff0c; 后序是左右根。 前序遍历&#xff1a;做题入口 class Solution {public List<Integer> preorderTraversal(TreeNode root) {List<Integer…

【Java面试丨企业场景】常见技术场景

一、单点登录怎么实现的 1. 介绍 单点登录&#xff08;Single Sign On&#xff0c;SSO&#xff09;&#xff1a;只需要登录一次&#xff0c;就可以访问所有信任的应用系统 2. 解决方案 JWT解决单点登录问题 用户访问应用系统&#xff0c;会在网关判断Token是否有效如果Tok…

Git的安装以及本地仓库的创建和配置

文章目录 1.Git简介2.安装Git2.1在Centos上安装git2.2 在ubuntu上安装git 3.创建本地仓库4.配置本地仓库 1.Git简介 Git是一个分布式版本控制系统&#xff0c;用于跟踪和管理文件的更改。它可以记录和存储代码的所有历史版本&#xff0c;并可以方便地进行分支管理、合并代码和协…

leetcode 1372. 二叉树中的最长交错路径

给你一棵以 root 为根的二叉树&#xff0c;二叉树中的交错路径定义如下&#xff1a; 选择二叉树中 任意 节点和一个方向&#xff08;左或者右&#xff09;。 如果前进方向为右&#xff0c;那么移动到当前节点的的右子节点&#xff0c;否则移动到它的左子节点。 改变前进方向&a…

Pytorch气温预测实战

数据集 数据有8个特征&#xff0c;一个标签值 自变量因变量yearactual:当天的真实最高温度monthdayweek:星期几temp_1:昨天的最高温度temp_2:前天的最高温度值average:在历史中&#xff0c;每年这一天的平均最高温度friend:朋友猜测的温度 year,month,day,week,temp_2,temp_…

WPF基础知识

WPF布局基础原则 1.一个窗口中只能包含一个元素 2. 不应该显示设置元素尺寸 3. 不应使用坐标设置元素的位置 4.可以嵌套布局容器WPF布局容器 StackPanel:水平或垂直排列元素&#xff0c;Orientation属性分别为&#xff1a;Horizontal/VerticalWrapPanel:水平或垂直排列元素、…

安科瑞能源物联网以能源供应、能源管理、设备管理、能耗分析的能源流向为主线-安科瑞黄安南

摘要&#xff1a;随着科学技术的发展&#xff0c;我国的物联网技术有了很大进展。为了提升电力抄表服务的稳定性&#xff0c;保障电力抄表数据的可靠性&#xff0c;本文提出并实现了基于物联网的智能电力抄表服务平台&#xff0c;结合云计算、大数据等技术&#xff0c;提供电力…

Codeforces Round 888 (Div. 3)(视频讲解全部题目)

[TOC](Codeforces Round 888 (Div. 3)&#xff08;视频讲解全部题目&#xff09;) Codeforces Round 888 (Div. 3)&#xff08;A–G&#xff09;全部题目详解 A Escalator Conversations #include<bits/stdc.h> #define endl \n #define INF 0x3f3f3f3f using namesp…

mars3d绘制区域范围(面+边框)

1、图例&#xff08;绿色面区域白色边框&#xff09; 2、代码 1&#xff09;、绘制区域ts文件 import { mapLayerCollection } from /hooks/cesium-map-init /*** 安全防護目標* param map*/ export const addSafetyProtection async (map) > {const coverDatas await m…

6个ChatGPT4的最佳用途

文章目录 ChatGPT 4’s Current Limitations ChatGPT 4 的当前限制1. Crafting Complex Prompts 制作复杂的提示2. Logic Problems 逻辑问题3. Verifying GPT 3.5 Text 验证 GPT 3.5 文本4. Complex Coding 复杂编码5.Nuanced Text Transformation 细微的文本转换6. Complex Kn…

Windows下安装HBase

Windows下安装HBase 一、HBase简介二、HBase下载安装包三、环境准备3.1、 JDK的安装3.2、 Hadoop的安装 四、HBase安装4.1、压缩包解压为文件夹4.2、配置环境变量4.3、%HBASE_HOME%目录下新建临时文件夹4.4、修改配置文件 hbase-env.cmd4.4.1、配置JAVA环境4.4.2、set HBASE_MA…

使用Hutool工具类中的BeanUtil.fillBeanWithMap方法报错`DateException`

使用Hutool工具类中的BeanUtil.fillBeanWithMap方法报错DateException 问题背景 在实现登录功能时&#xff0c;我先将用户信息存入Redis中&#xff0c;然后再获取用户信息的时候&#xff0c;又取出来。我存入Redis的用户信息是Hash格式的&#xff0c;所以取出来的时候&#xff…

Ansible的脚本 --- playbook 剧本

文章目录 一、playbook剧本的组成创建剧本运行playbook二、定义、引用变量三、指定远程主机sudo切换用户四、when条件判断五、迭代Templates 模块tags 模块 一、playbook剧本的组成 playbooks 本身由以下各部分组成 &#xff08;1&#xff09;Tasks&#xff1a;任务&#xff0…

kubernetes 证书更新

参考&#xff1a; https://kubernetes.io/zh-cn/docs/tasks/administer-cluster/kubeadm/kubeadm-certs/https://kubernetes.io/zh-cn/docs/tasks/tls/certificate-rotation/ 查看证书 查看 kubelet是否支持证书自动轮换&#xff0c;默认轮换的证书位于目录 /var/lib/kubele…

vscode 打开文件时如何在资源管理器中展开文件所在的整个目录树(包含node_modules)

如题。去 首选项 --> 设置 中 搜索 “Auto Reveal”&#xff0c;然后选true&#xff0c;注意把下面的Auto Reveal Exclude排除项中的node_modules去掉&#xff0c;这样才能定位到node_modules中的文件。 **/node_modules

Leetcode刷题---C语言实现初阶数据结构---单链表

1 删除链表中等于给定值 val 的所有节点 删除链表中等于给定值 val 的所有节点 给你一个链表的头节点head和一个整数val&#xff0c;请你删除链表中所有满足Node.valval的节点&#xff0c;并返回新的头节点 输入&#xff1a;head [1,2,6,3,4,5,6], val 6 输出&#xff1a;[…

基于 ThinkPHP 5.1(稳定版本) 开发wms 进销存系统源码

基于ThinkPHP 5.1&#xff08;LTS版本&#xff09;开发的WMS进销存系统源码 管理员账号密码&#xff1a;admin 一、项目简介 这个系统是一个基于ThinkPHP框架的WMS进销存系统。 二、实现功能 控制台 – 权限管理&#xff08;用户管理、角色管理、节点管理&#xff09; – 订…

Docker 入门终极指南[详细]

前言 富 Web 时代&#xff0c;应用变得越来越强大&#xff0c;与此同时也越来越复杂。集群部署、隔离环境、灰度发布以及动态扩容缺一不可&#xff0c;而容器化则成为中间的必要桥梁。 本节我们就来探索一下 Docker 的神秘世界&#xff0c;从零到一掌握 Docker 的基本原理与实…

忽略nan值,沿指定轴计算标准(偏)差numpy.nanstd()

【小白从小学Python、C、Java】 【计算机等考500强证书考研】 【Python-数据分析】 沿指定轴方向 计算标准(偏)差 numpy.nanstd() [太阳]选择题 import numpy as np a np.array([[1,2],[np.nan,3]]) print("【显示】a ") print(a) print("【执行】np.std(a)&qu…

链表OJ题目1 (移除链表元素)

力扣&#xff08;链接放这里喽&#xff09; 先贴代码再做讲解&#xff1a; struct ListNode* removeElements(struct ListNode* head, int val) {struct ListNode* cur head;struct ListNode* tail NULL;while(cur){if(cur->val val){if(cur head){head head->next…