文章目录
- 前言
- 一、光照探针用在哪怎么用
- 1、光照探针的应用场景
- 2、我们按照以上条件,在Unity中搭建一个相同的环境
- 3、创建光照探针
- 二、在我们自己的Shader中,实现支持光照探针
- 1、使用常用的 cginc
- 2、在 v2f 中,准备如下变量
- 3、在顶点着色器中,进行顶点和法线世界空间的转化后,使用如下代码
- 4、在片元着色器中,使用如下代码计算
- 最终代码
前言
主要写全局照明中,光照探针的支持
一、光照探针用在哪怎么用
1、光照探针的应用场景
在一个只有 Backed 模式灯光的场景中,有一个非静态的物体
即该物体在烘焙时,不会被烘焙,不会受到烘焙灯光的影响。
但是,我们此时不能修改灯光的模式 也不能修改该物体为静态物体
却需要给该动态物体受到烘焙灯光的影响
此时就需要使用光照探针了
2、我们按照以上条件,在Unity中搭建一个相同的环境
我们会发现,小球在烘焙后是不受烘焙光的影响的
3、创建光照探针
可以直接在一个空物体添加 Light Probe Group,也按下图直接添加光照探针
添加后,把光照探针的范围设置到,要让动态小球接收到烘焙光影响的范围
在光照探针中,黄色小点点在空间内越密集越多,动态物体接收到的烘焙光越精致细腻
然后,我们烘焙后就可以看见小球能接收烘焙光的效果了
二、在我们自己的Shader中,实现支持光照探针
我们继续使用之前的文章作为测试
- Unity中Shader再议ATTENUATION
我们会发现我们的 Shader在使用后是全黑的
因为我们关闭了主平行光,两个点光源又是Backed类
1、使用常用的 cginc
#include “AutoLight.cginc”
#include “Lighting.cginc”
2、在 v2f 中,准备如下变量
float4 worldPos : TEXCOORD;
half3 worldNormal : NORMAL;
half3 sh : TEXCOORD2;
3、在顶点着色器中,进行顶点和法线世界空间的转化后,使用如下代码
//实现 球谐 或者 环境色 和 顶点照明 的计算
//SH/ambient and vertex lights
#ifndef LIGHTMAP_ON //当此对象没有开启静态烘焙时
#if UNITY_SHOULD_SAMPLE_SH && !UNITY_SAMPLE_FULL_SH_PER_PIXELo.sh = 0;//近似模拟非重要级别的点光在逐顶点上的光照效果#ifdef VERTEXLIGHT_ONo.sh += Shade4PointLights(unity_4LightPosX0,unity_4LightPosY0,unity_4LightPosZ0,unity_LightColor[0].rgb,unity_LightColor[1].rgb,unity_LightColor[2].rgb,unity_LightColor[3].rgb,unity_4LightAtten0,o.worldPos,o.worldNormal);#endifo.sh = ShadeSHPerVertex(o.worldNormal,o.sh);
#endif
#endif
4、在片元着色器中,使用如下代码计算
#if UNITY_SHOULD_SAMPLE_SH && !UNITY_SAMPLE_FULL_SH_PER_PIXELgiInput.ambient = i.sh;
#elsegiInput.ambient = 0.0;
#endif
然后,我们就可以看见我们的Shader也有光照探针的效果了
同时,也有了逐顶点光照的效果
最终代码
//在这里里面使用 自定义的 cginc 来实现全局GI
//GI数据的准备
//烘培分支的判断
//GI的直接光实现
//GI的间接光实现
//再议ATTENUATION
//光照探针的支持
Shader "MyShader/P1_8_8"
{SubShader{Tags { "RenderType"="Opaque" }Pass{Tags{"LightMode"="ForwardBase"}CGPROGRAM#pragma vertex vert#pragma fragment frag#pragma multi_compile_fwdbase#include "UnityCG.cginc"#include "AutoLight.cginc"#include "Lighting.cginc"#include "CGIncludes/MyGlobalIllumination.cginc"struct appdata{float4 vertex : POSITION;//定义第二套 UV ,appdata 对应的固定语义为 TEXCOORD1#if defined(LIGHTMAP_ON) || defined(DYNAMICLIGHTMAP_ON)float4 texcoord1 : TEXCOORD1;#endifhalf3 normal : NORMAL;};struct v2f{float4 pos : SV_POSITION;float4 worldPos : TEXCOORD;//定义第二套UV#if defined(LIGHTMAP_ON) || defined(DYNAMICLIGHTMAP_ON)float4 lightmapUV : TEXCOORD1;#endifhalf3 worldNormal : NORMAL;half3 sh : TEXCOORD2;//1、使用 阴影采样 和 光照衰减的方案的 第一步//同时定义灯光衰减以及实时阴影采样所需的插值器UNITY_LIGHTING_COORDS(3,4)//UNITY_SHADOW_COORDS(2)};v2f vert (appdata v){v2f o;o.pos = UnityObjectToClipPos(v.vertex);o.worldPos = mul(unity_ObjectToWorld,v.vertex);o.worldNormal = UnityObjectToWorldNormal(v.normal);//对第二套UV进行纹理采样#if defined(LIGHTMAP_ON) || defined(DYNAMICLIGHTMAP_ON)o.lightmapUV.xy = v.texcoord1 * unity_LightmapST.xy + unity_LightmapST.zw;#endif//实现 球谐 或者 环境色 和 顶点照明 的计算//SH/ambient and vertex lights#ifndef LIGHTMAP_ON //当此对象没有开启静态烘焙时#if UNITY_SHOULD_SAMPLE_SH && !UNITY_SAMPLE_FULL_SH_PER_PIXELo.sh = 0;//近似模拟非重要级别的点光在逐顶点上的光照效果#ifdef VERTEXLIGHT_ONo.sh += Shade4PointLights(unity_4LightPosX0,unity_4LightPosY0,unity_4LightPosZ0,unity_LightColor[0].rgb,unity_LightColor[1].rgb,unity_LightColor[2].rgb,unity_LightColor[3].rgb,unity_4LightAtten0,o.worldPos,o.worldNormal);#endifo.sh = ShadeSHPerVertex(o.worldNormal,o.sh);#endif#endif//2、使用 阴影采样 和 光照衰减的方案的 第二步UNITY_TRANSFER_LIGHTING(o,v.texcoord1.xy)//TRANSFER_SHADOW(o)return o;}fixed4 frag (v2f i) : SV_Target{//1、准备 SurfaceOutput 的数据SurfaceOutput o;//目前先初始化为0,使用Unity自带的方法,把结构体中的内容初始化为0UNITY_INITIALIZE_OUTPUT(SurfaceOutput,o)o.Albedo = 1;o.Normal = i.worldNormal;//1、代表灯光的衰减效果//2、实时阴影的采样UNITY_LIGHT_ATTENUATION(atten,i,i.worldPos);//2、准备 UnityGIInput 的数据UnityGIInput giInput;//初始化UNITY_INITIALIZE_OUTPUT(UnityGIInput,giInput);//修改用到的数据giInput.light.color = _LightColor0;giInput.light.dir = _WorldSpaceLightPos0;giInput.worldPos = i.worldPos;giInput.worldViewDir = normalize(_WorldSpaceCameraPos - i.worldPos);giInput.atten = atten;giInput.ambient = 0;#if UNITY_SHOULD_SAMPLE_SH && !UNITY_SAMPLE_FULL_SH_PER_PIXELgiInput.ambient = i.sh;#elsegiInput.ambient = 0.0;#endif#if defined(DYNAMICLIGHTMAP_ON) || defined(LIGHTMAP_ON)giInput.lightmapUV = i.lightmapUV;#endif//3、准备 UnityGI 的数据UnityGI gi;//直接光照数据(主平行光)gi.light.color = _LightColor0;gi.light.dir = _WorldSpaceLightPos0;//间接光照数据(目前先给0)gi.indirect.diffuse = 0;gi.indirect.specular = 0;//GI的间接光照的计算 LightingLambert_GI1(o,giInput,gi);//查看Unity源码可知,计算间接光照最主要的函数就是//inline UnityGI UnityGI_Base1(UnityGIInput data, half occlusion, half3 normalWorld)//所以我们直接给 gi 赋值,可以不使用 LightingLambert_GI1gi = UnityGI_Base1(giInput,1,o.Normal);//GI的直接光照的计算//我们在得到GI的数据后,对其进行Lambert光照模型计算,即可得到结果fixed4 c = LightingLambert1(o,gi);return c;//return fixed4(gi.indirect.diffuse,1);//return 1;}ENDCG}//阴影的投射Pass{//1、设置 "LightMode" = "ShadowCaster"Tags{"LightMode" = "ShadowCaster"}CGPROGRAM#pragma vertex vert#pragma fragment frag//需要添加一个 Unity变体#pragma multi_compile_shadowcaster#include "UnityCG.cginc"//声明消融使用的变量float _Clip;sampler2D _DissolveTex;float4 _DissolveTex_ST;//2、appdata中声明float4 vertex:POSITION;和half3 normal:NORMAL;这是生成阴影所需要的语义.//注意:在appdata部分,我们几乎不要去修改名字 和 对应的类型。//因为,在Unity中封装好的很多方法都是使用这些标准的名字struct appdata{float4 vertex:POSITION;half3 normal:NORMAL;float4 uv:TEXCOORD;};//3、v2f中添加V2F_SHADOW_CASTER;用于声明需要传送到片断的数据.struct v2f{float4 uv : TEXCOORD;V2F_SHADOW_CASTER;};//4、在顶点着色器中添加TRANSFER_SHADOW_CASTER_NORMALOFFSET(o),主要是计算阴影的偏移以解决不正确的Shadow Acne和Peter Panning现象.v2f vert(appdata v){v2f o;o.uv.zw = TRANSFORM_TEX(v.uv,_DissolveTex);TRANSFER_SHADOW_CASTER_NORMALOFFSET(o);return o;}//5、在片断着色器中添加SHADOW_CASTER_FRAGMENT(i)fixed4 frag(v2f i) : SV_Target{//外部获取的 纹理 ,使用前都需要采样fixed4 dissolveTex = tex2D(_DissolveTex,i.uv.zw);//片段的取舍clip(dissolveTex.r - _Clip);SHADOW_CASTER_FRAGMENT(i);}ENDCG}}
}