Linux文件缓冲区

在这里插入图片描述

文章目录

    • 1. 缓冲区现象
    • 2. 用户级和系统级缓冲区
    • 3. 缓冲区刷新
    • 4. 为什么要有缓冲区
    • 5. 文件打印的全缓冲
    • 6. 模拟实现C语言文件标准库

本章gitee代码仓库:重定向、模拟C语言文件标准库

1. 缓冲区现象

image-20231112144810498

我们这里分别调用了4个差不多的函数,但是结果是有一定差别的,这些其实就是因为有缓冲区的存在,导致了现象的不同。

2. 用户级和系统级缓冲区

C语言提供访问文件的接口,本质上都是对系统提供的接口进行封装。上面的func3函数,我们将一号文件描述符关闭之后,C接口的内容都没有在显示器上显示,而系统接口write不受影响,正常显示。

这个就能说明,C语言提供的缓冲区,并不是系统级别的缓冲区。例如printffprintffwrite这些库函数,都是先将数据写入到C语言提供的缓冲区当中,然后再到合适的时候,通过write将内容刷新带内核的缓冲区当中。

image-20231112153809575

所以这里close(1)将一号文件描述符关闭之后,再想让write写入,那就写不进去了,而在此之前write自己的内容,是直接写入系统缓冲区的,所以我们就能看到通过系统调用write写的内容不受影响,而C库函数的内容全部都没有被刷新出来。

3. 缓冲区刷新

缓冲区刷新分为三种:

  1. 无缓冲:直接刷新

  2. 行缓冲:遇到换行符(\n)刷新

    一般向显示器打印采用行刷新

  3. 全缓冲:缓冲区满了之后再刷新

    向文件写入一般采用全缓冲

上面的func4,因为我们字符串后面都跟上了\n,采用的行刷新,和func3不一样,遇到\n就刷新缓冲区,所以内容能够全部刷新出来。

当然,在进程退出的时候,也会再刷新一次缓冲区

4. 为什么要有缓冲区

我们现在有很多快递驿站,这些驿站就可以理解为缓冲区,有了驿站的存在,我们寄快递的时候,直接将快递放到驿站,填好地址信息,我们就可以走了,就不需要我们自己亲自去将这个东西给对方;而拿快递的时候也是,有了驿站的存在,我们可以选择在自己有空的时候去拿,而不是说快递一到,我们就得立马去,这样就能极大的提高我们的效率。

缓冲区也是如此,我们的库函数将内容交给我们的缓冲区后,然后再由缓冲区将内容在合适的时候,调用系统接口,把内容刷新到系统。这样就能够提高用户的效率,让C语言函数的接口更快。

fprintfprintfscanf这些,都是叫格式化输入输出接口,我们向显示器打印整数1024,在我们看来是一个整数,其实本质上是字符。先将我们的内容作为一个整体,格式化刷新到C的缓冲区,然后统一刷到内核当中。

image-20231112161619783

所以,有缓冲区的存在,也能更好地配合我们的格式化输入输出。

在C语言的文件操作里面,是绕不开这个struct FILE结构体的,所以里面也封装了缓冲区字段。

例如我们在C语言当中一次性打开了5个文件,那么就会有5个对应的缓冲区。

这个FILE是语言层面的,语言层面都是属于用户的,所以这个缓冲区是属于用户层的

5. 文件打印的全缓冲

有了这些知识,我们再来看上面的func2,我们在程序退出之前fork创建子进程,在显示器上输出的是正常的,但是如果我们将内容重定向到文件当中,我们发现C库函数的接口都输出了2次。

这是因为向文件打印时,刷新方案变成了全缓冲

当变为全缓冲之后,遇到\n就不再刷新。而这里fork创建子进程,子进程会将父进程的代码和数据拷贝一份,当然这里缓冲区的数据也会拷贝。因为是全缓冲,这里的缓冲区里面是有数据的。

我们先来验证一下这个,不创建子进程,向文件打印:

void func2()
{const char *fstr="hello fwrite\n";const char *str="hello write\n";printf("hello\n");sleep(1);fprintf(stdout,"hello fpf\n");sleep(1);fwrite(fstr,strlen(fstr),1,stdout);sleep(1);write(1,str,strlen(str));sleep(3);//fork();
}

GIF 2023-11-12 16-48-24

可以看到,这里向文件打印,虽然加了\n但并没有刷新,而是采用的全缓冲,等进程结束之后,全部刷新了。

所以这里拷贝的缓冲区进行写时拷贝,父进程退出刷新一次,子进程退出刷新一次,所以我们就能看到C接口的信息会被刷新2次。而我们输出到显示的时候,因为是行缓冲,每次直接刷新了,到子进程的时候,缓冲区里面没有数据了,所以就输出一次。

6. 模拟实现C语言文件标准库

简易实现:

#include"Mystdio.h"
#include<sys/types.h>
#include<sys/stat.h>
#include<fcntl.h>
#include<unistd.h>
#include<stdlib.h>
#include<string.h>
#include<assert.h>#define FILE_MODE 0666_FILE * _fopen(const char*filename,const char*flag)
{assert(filename);assert(flag);int f = 0;int fd = -1;if(strcmp(flag,"w") == 0){f = (O_CREAT|O_WRONLY|O_TRUNC);fd = open(filename,f,FILE_MODE);}else if(strcmp(flag,"a") == 0){f = (O_CREAT|O_WRONLY|O_APPEND);  fd = open(filename,f,FILE_MODE);}else if(strcmp(flag,"r") == 0){f = O_RDONLY;fd = open(filename,f);}elsereturn NULL;if(fd == -1)  return NULL;_FILE*fp = (_FILE*)malloc(sizeof(_FILE));fp->fileon = fd;fp->flag = FLUSH_ALL;  fp->out_pos = 0;  //初始缓冲区没有内容return fp;
}
int _fwrite(_FILE*fp,const char*s,int len)
{memcpy(&fp->outbuffer[fp->out_pos],s,len);fp->out_pos+=len;if(fp->flag & FLUSH_NOW){write(fp->fileon,fp->outbuffer,fp->out_pos);fp->out_pos = 0;}else if(fp->flag&FLUSH_LINE){if(fp->outbuffer[fp->out_pos-1] == '\n'){write(fp->fileon,fp->outbuffer,fp->out_pos);fp->out_pos = 0;}}else if(fp->flag&FLUSH_ALL){if(fp->out_pos == SIZE){write(fp->fileon,fp->outbuffer,fp->out_pos);fp->out_pos = 0;} }return len;
}void _fflush(_FILE*fp)
{if(fp->out_pos>0){write(fp->fileon,fp->outbuffer,fp->out_pos);fp->out_pos = 0;}
}void _fclose(_FILE*fp)
{if(fp == NULL)  return;_fflush(fp);close(fp->fileon);free(fp);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/139684.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深度解析找不到msvcp120.dll相关问题以及解决方法

​在计算机使用过程中&#xff0c;我们经常会遇到一些错误提示&#xff0c;其中之一就是“msvcp120.dll丢失”。这个错误通常会导致某些应用程序无法正常运行&#xff0c;给用户带来很大的困扰。那么&#xff0c;如何解决msvcp120.dll丢失的问题呢&#xff1f;本文将为大家介绍…

leetcode刷题日记:111. Minimum Depth of Binary Tree(二叉树的最小深度)

给我们一个二叉树&#xff0c;我们应该如何来求二叉树的最小深度呢&#xff1f; 二叉树的最小深度指的是叶子结点到所处的位置最小的&#xff0c;这就是二叉树的最小深度&#xff0c;也就是说我们要找的是离根结点最近的叶子结点。如果我们从根结点向下出发寻找叶子节点&#x…

overflow: auto滚动条跳到指定位置

点击对应模块跳转页面&#xff0c;滚动到对应模块&#xff0c;露出到可视范围 代码&#xff1a; scrollToCurrentCard() {// treeWrapper是包裹多个el-tree组件的父级元素&#xff0c;也是设置overflow:auto的元素let treeWrapper document.getElementsByClassName(treeWrapp…

STM32笔记—定时器

目录 一、TIM简介 二、基本定时器&#xff08;TIM6和TIM7&#xff09; 1. TIM6和TIM7简介 2. TIM6和TIM7的主要特性 3. TIM6和TIM7的功能 3.1 时基单元 3.2 计数模式 3.3 时钟源 三、通用定时器 1. TIMx(2、3、4、5)简介 2. TIMx主要功能 3. 时钟选择 4. 影子寄存…

【算法练习Day46】判断子序列不同的子序列

​&#x1f4dd;个人主页&#xff1a;Sherry的成长之路 &#x1f3e0;学习社区&#xff1a;Sherry的成长之路&#xff08;个人社区&#xff09; &#x1f4d6;专栏链接&#xff1a;练题 &#x1f3af;长路漫漫浩浩&#xff0c;万事皆有期待 文章目录 判断子序列不同的子序列总结…

450. 删除二叉搜索树中的节点

题目描述 给定一个二叉搜索树的根节点 root 和一个值 key&#xff0c;删除二叉搜索树中的 key 对应的节点&#xff0c;并保证二叉搜索树的性质不变。返回二叉搜索树&#xff08;有可能被更新&#xff09;的根节点的引用。 一般来说&#xff0c;删除节点可分为两个步骤&#x…

uniapp中picker 获取时间组件如何把年月日改成年月日默认时分秒为00:00:00

如图所示&#xff0c;uniapp中picker组件的日期格式为&#xff1a; 但后端要 2023-11-08 00:00:00格式 如何从2023-11-08转化为 2023-11-08 00:00:00&#xff1a;&#x1f447; const date new Date(e.detail.value);//"2023-11-17" date.setHours(0, 0, 0); // 2…

C语言从入门到精通之【数据类型和关键字】

数据类型在程序使用之前已经预先设定好了&#xff0c;在整个程序的运行过程中没有变化&#xff0c;这些称为常量&#xff08;constant&#xff09;。其他数据类型在程序运行期间可能会改变或被赋值&#xff0c;这些称为变量&#xff08;variable&#xff09;。 变量类型有几种…

复盘一个诡异的Bug

该Bug的诡异之处在于这是一个由多种因素综合碰撞之后形成的综合体。纵观整个排查过程&#xff0c;一度被错误的目标误导&#xff0c;花费大量功夫后才找到问题点所在&#xff0c;成熟的组件在没有确凿证据之前不能随意怀疑其稳定性。 前言 此前在接入两台粒径谱仪&#xff08;…

Android sqlite 使用简介

进行Android应用开发时经常会用到数据库。Android系统支持sqlite数据库&#xff0c;在app开发过程中很容易通过SQLiteOpenHelper使用数据库&#xff0c;SQLiteOpenHelper依赖于Context对象&#xff0c;但是基于uiatomator1.0和Java程序等无法获取Context的应用如何使用数据库呢…

html与django实现多级数据联动

html与django实现多级数据联动 1、流程 1、进入页面后先获取年级数据 2、选择年级后获取院级数据 3、选择院级后获取层次数据 4、选择层次数据后获取专业数据 2、html代码 <p style"margin-top: 10px;"><label>年级</label><select id"…

什么是微服务自动化测试?

什么是微服务&#xff1f; 微服务 - 也称为微服务架构 - 是一种构建方式&#xff0c;它将应用程序构建为松散耦合服务的集合&#xff0c;具有完整的业务功能。微服务架构允许连续交付/部署大型复杂应用程序。本文将概述自动微服务测试工具和最佳实践。 它还使组织能够发展其技…

Ubuntu诞生已经19年了

导读2004 年 10 月 20 日&#xff0c;Ubuntu 4.10 正式发布&#xff0c;代号‘Warty Warthog’。 2004 年 10 月 20 日&#xff0c;Ubuntu 4.10 正式发布&#xff0c;代号‘Warty Warthog’。 ▲ Ubuntu 4.10 与最新版 Ubuntu 23.10 的对比 作为 Ubuntu 第一个版本&#xff0…

Postman基本页面和请求/响应页签介绍

近期在复习Postman的基础知识&#xff0c;在小破站上跟着百里老师系统复习了一遍&#xff0c;也做了一些笔记&#xff0c;希望可以给大家一点点启发。 一、Postman的界面介绍 Home主页、Workspace工作空间、Collections集合、Environments环境变量、Mock Server虚拟服务器、Mo…

Direct3D粒子系统

粒子和点精灵 粒子(是种微小的物体,在数学上通常用点来表示其模型。所以显示粒子时,使用点图元(由 D3 DPRIMITIVETYPE类型的D3 DPT POINTLIST枚举常量表示)是一个很好的选择。但是光栅化时,点图元将被映射为一个单个像素。这样就无法为我们提供很大的灵活性,因为实际应用…

spring boot 中@Value读取中文配置时乱码

1.spring boot 读取application.properties 该文件是iso8859编码 如果是直接写中文 读取时会乱码 显示成?? 必须得转ascii码才能正常显示 其他方法测试也不行 Value("${apig.order.tiaokong.qianzi}") private String apigOrderTiaokongQianzi;

Spring面试题:(六)Spring注解开发原理

ioc过程 发现只要将bean注册到BeanDefinitionMap中就可以创建bean对象 如何将xml配置的bean注册到BeanDefinitionMap 通过注解注册的bean过程一样 注册bean的接口&#xff1a;BeanDefinitionRegistryPostProcessor 开启组件扫描的两种方式&#xff1a;xml和注解 xml方式…

2020年五一杯数学建模B题基于系统性风险角度的基金资产配置策略分析解题全过程文档及程序

2020年五一杯数学建模 B题 基于系统性风险角度的基金资产配置策略分析 原题再现 近年来&#xff0c;随着改革开放程度的不断提高&#xff0c;我国经济运行中的各种风险逐渐暴露并集中传导和体现于金融领域。党的“十九大”报告提出“守住不发生系统性金融风险的底线”要求&am…

【云备份项目两万字总结】服务端篇 -----附源码

项目总结 整体回顾逐步实现utill.hppconfig.hppdata.hpphot.hppservice.hpp 代码 整体回顾 服务端的目标是&#xff1a; 对客户端的请求进行处理管理客户端上传的文件 于客户端进行数据交换&#xff0c;我们需要引入网络&#xff0c;所以我们引入第三方库----httplib.h库&am…

【见缝插针】射击类游戏-微信小程序项目开发流程详解

还记得小时候玩过的见缝插针游戏吗&#xff0c;比一比看谁插得针比较多&#xff0c;可有趣了&#xff0c;当然了&#xff0c;通过它可以训练自己的手速反应&#xff0c;以及射击水平&#xff0c;把握时机&#xff0c;得分越高就越有成就感&#xff0c;相信小朋友们会喜欢它的&a…