【操作系统内核】线程

【操作系统内核】线程

为什么需要线程

比如我要做一个视频播放器,就需要实现三个功能:

① 从磁盘读取视频数据

② 对读取到的视频数据进行解码

③ 对解码的数据进行播放

  1. 如果串行执行(通过一个进程来执行):
20230805151957

那么播放一会就需要等待数据从磁盘加载(读磁盘很慢,会使得这个进程阻塞,CPU空置),然后通过CPU解码,就会一卡一卡的

  1. 如果三个进程来执行,分别负责IO的读写、CPU解码以及播放

进程1读磁盘内容,然后传递给进程2解码,再传递给进程3播放,这样就产生了两个问题:

  • 创建了三个进程,实现一个简单的功能却耗费过多的系统资源
  • 进程间的内存空间不一致,数据时独立,进程之间传递数据,需要操作系统协调(频繁陷入内核)完成,效率低

线程解决进程开销大的问题

① 线程直接共享进程的所有资源 (比如 mm_struct),所以线程就变轻了,创建线程比创建进程要快到 10 ~ 100 倍

② 线程之间共享相同的地址空间 (mm_struct),这样利于线程之间数据高效的传输

③ 可以在一个进程中创建多个线程,实现程序的并发执行

什么是线程:进程中的一条执行流(函数调用链),用于执行不同路径的代码指令,每个进程一开始都有一个主线程

20230805155929

因此,进程可视为由两部分组成:资源平台(地址空间、磁盘、网络资源等)、线程

线程可访问的三类数据

线程共享mm_struct,所以其执行的代码指令是存放在进程地址空间的代码段中

  1. 线程栈

前文说了线程就是一条函数调用链,所以每个线程需要有自己私有的线程栈,存放在当前进程的堆中

而主线程(如main函数)的栈则使用进程的栈

20230805160700

线程栈从高地址向低地址生长

  1. 全局变量(读/写数据段)

  2. 线程私有变量

线程创建代码实例 pthread_create():

20230805160859

线程私有数据设置:

  • 创建一个私有数据key:pthread_key_create(“key”)
  • 设置私有数据:线程 1:pthread_setspecific(“key”, 22)
  • 获取私有数据:线程 1:pthread_getspecific(“key”)
20230805161312

pthread_create详细过程

由于一个进程会有多个线程栈,可以用两个链表来管理这些线程栈:

  • stack_used: 还未退出的线程的线程栈
  • stack_cache: 退出的线程的线程栈,缓存在堆中,下次其他线程启动时直接可以用

pthread创建线程是由内核态和用户态合作实现的,也就是先在用户态创建一个线程(pthread实例),然后在切换到内核态再创建一个线程(task_struct实例):

用户态(创建一个用户态的线程):

  • 调用pthread_create()
    • 根据设置栈的大小,从stack_cache中找到相应大小的线程栈;如果没有,申请堆空间创建线程栈
    • 创建pthread实例(包含了线程私有数据、栈大小、入口函数等),将之放在线程栈栈底位置
  • 调用create_thread()
    • clone()系统调用:将子线程要执行的函数代码起始指令位置、参数写入寄存器(很重要) => 到此为止都是主线程在执行

内核态(创建一个内核态的线程管理用户态的线程):

  • 将主线程的寄存器信息保存到主线程内核栈中

  • 调用do_fork()(创建进程也是用的do_fork(),所以进程线程的创建都差不太多)

    • 创建task_struct以及对应的内核栈

    • 创建进程时,需要复制复制父进程的实例,但线程时资源共享的,不需要复制主线程的实例,直接将线程task_struct的实例指针指向进程的实例指针即可

      20230805163821
  • 维护线程的亲缘关系,主要是维护线程和所属进程的关系

    • 进程的pid等于其tgid,其中tgid表示所属进程的id,据此操作系统可区分一个task是进程还是线程
    • 另外group_leader表示task所属的进程组
  • 将task_stuct加入链表队列

在内核的角度,线程和进程的区别并不大,只是进程需要多一份资源管理

Tip:

  • pthread创建用户线程需要内存创建用户态线程栈,内核创建内核线程需要内存分配(slab分配器)创建内核态线程栈,所以线程的数量不是无限的,会耗尽内存
  • 不管是创建用户态的线程,还是内核态的线程,开销都很小,消耗性能的动作主要是系统调用,会发生CPU上下文切换

所以,为减少CPU的上下文切换,可以建立线程池,当线程执行完后,把线程还给线程池(在用户态阻塞),而非操作系统,后续再重用这个线程,同时,设置最大线程数量,防止内存不足

主线程的CPU上下文恢复

  1. 线程创建完成后,将从主线程的内核栈获取CPU上下文切换到用户态,对比进程创建完成后切换到内核态,此时:

用户态的栈就是父进程的栈,栈顶指针也指向父进程的栈,指令指针也是指向父进程的代码

那么切回到用户态将会进入主线程

  1. 但clone()这个系统调用不一样,它在进入内核态之前,就把要执行的函数代码起始地址(也就是入口函数的地址)写入寄存器,进入内核后,存入内核栈的自然是子线程的下一条指令,此时:

用户态的线程栈就是创建线程A的栈,栈顶指针也指向线程A的栈,指令指针也是指向线程A的代码

然后执行start_tread(),执行线程函数

  1. 那么问题又来了,子线程倒是能顺利执行,那主线程怎么办,主线程的CPU上下文都没了:

但其实在内核拿到子线程CPU上下文,准备返回用户态的那一刻,主线程和子线程进行了一次线程切换参考链接,主线程的CPU上下文信息写入了其内核栈,等下次调度主线程时,就可以顺利运行了

用户级线程和内核级线程

PCB与TCB:

操作系统每创建一个进程,都会在内核态创建一个进程管理器PCB: Process Control Block,存入进程表

操作系统每创建一个线程,都会创建一个线程管理器TCB: Thread Control Block(如果是创建用户级线程,则TCB必须存放在用户态),存入线程表

用户级线程

用户级线程:由一些应用程序中的线程库来实现,应用程序可以调用线程库的 API 来完成线程的创建、线程的结束等操作

20230805173518

用户级线程优点:

  • 快,线程的创建、销毁、切换都非常快,不需要陷入内核态
  • 可以自定义调度算法,比较灵活

缺点:

  • 一个线程不让出CPU,其他的线程永远执行不到了,因此只有线程主动让出cpu,线程库才有切换线程的权力(如果有内核管理的话,会进行时钟中断)
  • 如果一个线程被阻塞,那么这个线程所有的线程都会被阻塞。
    • 比如我一个进程中的一个子线程A需要调用系统资源,则需要陷入内核找到对应的PCB去访问资源,这个过程中,子线程A被阻塞,其他线程也拿不到CPU的执行权,就整个进程都阻塞了
  • 操作系统看不到线程,只能以进程的视角调用,很可能分配的执行时间太少

内核级线程

内核级线程:在内核空间实现的线程,由操作系统管理的线程;内核级线程管理的所有工作都是由操作系统内核完成,比如内核线程的创建、结束、是否占用 CPU 等都是由操作系统内核来管理。

20230805180142

在支持内核线程的操作系统中,由内核来维护进程和线程的上下文信息 (PCB 和 TCB),一个进程的 PCB 会管理这个进程中所有线程的 TCB,当一个线程阻塞,那么内核可以选择另一个线程继续运行。=> 比如Linux

在Linux中,pthread_create会创建一个用户级线程 + 一个内核级线程,pthread_create创建一个TCB,内核会创建一个内核级线程(task_struct)来管理这个用户态线程

Tip: 这里的内核级线程也叫轻量级进程LWP

内核级线程的优点:

  • 内核级线程的创建、终止和切换都是由内核来完成的,所以应用程序如果想用内核级线程的话,需要通过系统调用来完成内核级线程的创建、终止和切换,这里会涉及到用户态和内核态的转换,因此相对于前面用户级线程,系统开销较大

缺点:

  • 在一个进程中,如果某个内核级线程因为发起系统调用而被阻塞,并不会影响其他内核线程的运行。因为内核级线程是被操作系统管理,受操作系统调度的

  • 因为内核级线程是调度单位,所以操作系统将整个时间片是分配给线程的,多线程的进程获得更多的 CPU 时间

用户级线程和内核级线程的关系

不管怎样,线程的实现都需要用户态和内核态的相互配合,因此产生了如下几种关系:

  1. 用户级线程 to 内核级线程: n to 1

线程的TCB存放在用户态,通过一个task_struct访问系统资源,也就是用户级线程,这种线程模式线程切换快,开销小

20230805181703
  1. 用户级线程 to 内核级线程: 1 to 1

线程的TCB存放在内核态,也就是内核态线程,如上文讲的pthread, 这种线程模式并发能力强

20230805182642
  1. 用户级线程 to 内核级线程: m to n

比如Go中的协程,需要根据自定义的调度器进行切换

20230805182717

内核线程

不管是创建进程(fork)还是创建线程(clone),都需要在内核调用do_fork()

202308061454307

而内核线程也可以通过kernel_thread()调用dofork()来创建

202308061457745

与内核级线程不同,内核线程不能访问用户态内存空间

  • active_mm:用于指向进程所处的虚拟地址空间 (用户态或者内核态)
  • mm: 用户态虚拟地址空间
  • init_mm: 内核态虚拟地址空间,全局只有一个

当进程处于内核态时,指向内核态的地址空间active_mm=mm;当进程处于用户态时,指向用户态的地址空间;active_mm=init_mm

202308061504355

而内核线程的mm=null,因此不能访用户态虚拟地址空间

Tip:1号进程如何从内核进程转变为普通进程?

  1. 先加载可执行文件,设置mm
202308061513248
  1. 设置寄存器,切换到用户态(为数不多从内核态切到用户态的)
202308061516009

线程的状态

在工作中,线程池是肯定会遇到的,会经常遇到线程的状态的变化,一般线程的状态为:创建、就绪、运行、阻塞、结束

202308061525614

还是一个状态很重要:挂起

阻塞挂起:当一个线程处于阻塞时,而其他运行中的线程需要的内核又很多,系统会把这个阻塞线程的内存交换到磁盘,即使等待的事件到达了,也只能转变为就绪挂起状态
阻塞解挂:当磁盘中的数据加载到内存后,线程的状态就从阻塞挂起变成了阻塞

同理,就绪状态的线程也可能会挂起

而处于运行中的线程,如果也因为内存不够,就会转变为就绪挂起状态

202308061539976

Linux线程的状态

  1. task_running: Linux线程没有就绪状态,或者说就绪状态和运行状态的值都是task_running,但Linux会把一个专门用来指向当前运行任务的指针 current 指向它,以表示它是一个正在运行的线程。
202308061548326
  1. TASK_INTERRUPTIBLE/TASK_UNINTERRUPTIBLE:阻塞状态(可中断和不可中断)

正常来说,一个线程需要进行IO操作,此时将会阻塞,等待IO操作完成后,再继续执行

202308061552838

但现在,在阻塞的时候,其他线程发了一个kill- 9的命令,如果是可中断的阻塞,需要响应这个信号,杀死自己;而如果是不可中断,则不会响应这个信号

202308061557745

不可中断的阻塞是个很危险的事情,一旦 I/O 操作因为特殊原因不能完成,这个时候,谁也叫不醒这个进程了;所以一般只有内核线程才会设置这个状态,比如执行磁盘IO(DMA搬运数据被打断可能会产生严重问题)时

总结下线程的执行效率比进程高

  1. 线程创建直接重用进程的资源即可,不需要额外维护,线程释放也不需要考虑资源释放的问题
  2. 线程间数据共享,不需要切内核就可以访问共享数据
  3. 线程切换要快,进程的切换需要切换进程对应的页表,需要 flush TLB,而刷新TLB后页表项都不会命中LTB,需要去内存查找页表,而线程共享页表

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/138324.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JavaScript从入门到精通系列第三十三篇:详解正则表达式语法(二)

文章目录 一:正则表达式 1: 检查一个字符串中是否有. 2:第二种关键表达 3:第三种关键表达 ​编辑4:第四种关键表达 5:第五种关键表达 6:第六种关键表达 二:核心表达二 1&am…

SSH 远程登录 WSL

更新ssh设置 sudo apt-get update sudo apt-get remove openssh-server sudo apt-get install openssh-server 编辑网络配置 sudo vi /etc/ssh/sshd_config (1)修改ssh服务监听端口和监听地址 (2)修改ssh服务允许使用用户名密码…

rabbitmq延迟队列发送与取消

安装延迟插件 根据rabbitmq的版本下载插件版本 # 延迟队列插件下载地址 https://github.com/rabbitmq/rabbitmq-delayed-message-exchange/releases# 将本地下载好的插件复制到docker里 # docker cp rabbitmq_delayed_message_exchange-3.9.0.ez 容器名:/plugins docker cp r…

API低代码开发应用场景

什么是API低代码开发平台 API低代码开发平台是一种基于低代码开发的技术平台,它可以帮助企业快速构建和部署API应用程序。该平台通过提供可视化的开发工具、预定义的组件和模板、自动化的代码生成等功能,使得开发者可以在不需要编写大量代码的情况下&am…

IP可视对讲实时录制系统

介绍 软件架构 技术支持 CallRecored介绍 IP可视对讲实时录制系统设计了数据库表,并完成了数据库建模,采用了视频编解码技术,高效网络传输,磁盘高效读写技术,以及提供开放接口。 系统客户端采用扁平化UI,…

SPSS曲线回归

前言: 本专栏参考教材为《SPSS22.0从入门到精通》,由于软件版本原因,部分内容有所改变,为适应软件版本的变化,特此创作此专栏便于大家学习。本专栏使用软件为:SPSS25.0 本专栏所有的数据文件请点击此链接下…

ZZ308 物联网应用与服务赛题第H套

2023年全国职业院校技能大赛 中职组 物联网应用与服务 任 务 书 (H卷) 赛位号:______________ 竞赛须知 一、注意事项 1.检查硬件设备、电脑设备是否正常。检查竞赛所需的各项设备、软件和竞赛材料等; 2.竞赛任务中所使用的…

认识继承和多态

1 继承 1.1 为什么需要继承 Java 中使用类对现实世界中实体来进行描述,类经过实例化之后的产物对象,则可以用来表示现实中的实体,但是现实世界错综复杂,事物之间可能会存在一些关联,那在设计程序里就需要考虑 比如&a…

集合贴4——QA机器人设计与优化

基础课21——知识库管理-CSDN博客文章浏览阅读342次,点赞6次,收藏2次。知识库中有什么信息内容,决定了智能客服机器人在回答时可以调用哪些信息内容,甚至可以更简单地理解为这是智能客服机器人的话术库。https://blog.csdn.net/22…

第二十九章 目标检测中的测试模型评价指标(车道线感知)

前言 近期参与到了手写AI的车道线检测的学习中去,以此系列笔记记录学习与思考的全过程。车道线检测系列会持续更新,力求完整精炼,引人启示。所需前期知识,可以结合手写AI进行系统的学习。 介绍 自动驾驶的一大前提是保证人的安全…

高频SQL50题(基础版)-3

文章目录 主要内容一.SQL练习题1.1174-即时食物配送代码如下(示例): 2.550-游戏玩法分析代码如下(示例): 3.2356-每位教师所教授的科目种类的数量代码如下(示例): 4.1141-查询近30天活跃用户数代码如下&…

MySQL | 数据库的表的增删改查【进阶】

MySQL | 数据库的表的增删改查【进阶】 文章目录 MySQL | 数据库的表的增删改查【进阶】系列文章目录本节目标:数据库约束约束类型NULL约束UNIQUE:唯一约束DEFAULT:默认值PRIMARY KEY:主键FOREIGN KEY:外键CHECK 表的设…

Postman模拟上传文件

如图,在F12抓到的上传文件的请求 那要在postman上模拟这种上传,怎么操作呢,如图,选中【Select File】选取文件上传即可

统一消息分发中心设计

背景 我们核心业务中订单完成时,需要完成后续的连带业务,扣件库存库存、增加积分、通知商家等。 如下图的架构: 这样设计出来导致我们的核心业务和其他业务耦合,每次新增连带业务或者去掉连带业务都需要修改核心业务。 一方面&…

竞赛选题 深度学习疲劳检测 驾驶行为检测 - python opencv cnn

文章目录 0 前言1 课题背景2 相关技术2.1 Dlib人脸识别库2.2 疲劳检测算法2.3 YOLOV5算法 3 效果展示3.1 眨眼3.2 打哈欠3.3 使用手机检测3.4 抽烟检测3.5 喝水检测 4 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 **基于深度学习加…

【tgowt】更新thirdparty

更新完毕后是这样的 之前有过构建但是不能用在owt-p2p项目中,会有崩溃? 【tgowt】cmake转ninja vs构建现在好像都更新到108了 submodule比较麻烦 只修改这里的还不行:一旦git submodule init 后,再改这里的似乎晚了?如果能成功clone就有生成 还必须要改这里的 折腾好几次才…

前端面试系列之工程化篇

如果对前端八股文感兴趣,可以留意公重号:码农补给站,总有你要的干货。 前端工程化 Webpack 概念 本质上,webpack 是一个用于现代 JavaScript 应用程序的静态模块打包工具。当 webpack 处理应用程序时,它会在内部从一个…

供暖系统如何实现数据远程采集?贝锐蒲公英高效实现智慧运维

山西某企业专注于暖通领域,坚持为城市集中供热行业和楼宇中央空调行业提供全面、专业的“智慧冷暖”解决方案。基于我国供热行业的管理现状,企业成功研发并推出了可将能源供应、管理与信息化、自动化相融合的ICS-DH供热节能管理系统。 但是,由…

openGauss学习笔记-119 openGauss 数据库管理-设置数据库审计-设置文件权限安全策略

文章目录 openGauss学习笔记-119 openGauss 数据库管理-设置数据库审计-设置文件权限安全策略119.1 背景信息119.2 数据库程序目录及文件权限119.3 建议 openGauss学习笔记-119 openGauss 数据库管理-设置数据库审计-设置文件权限安全策略 119.1 背景信息 数据库在安装过程中…

PLC开放式以太网通信网络状态查看工具netstat

在进行PLC的开放式以太网通信时,为了查看网络状态我们可以利用ping这个强有力的工具,还可以使用netstat这个工具。 博途PLC开放式以太网通信 UDP通信 博途PLC 1200/1500PLC开放式以太网通信TSEND_C通信(UDP)_RXXW_Dor的博客-CSDN博客文章浏览阅读1.7k次。开放式TSEND_C通信…