【ES专题】ElasticSearch功能详解与原理剖析

目录

  • 前言
  • 要点
  • 阅读对象
  • 阅读导航
  • 前置知识
  • 笔记正文
    • 一、ES数据预处理
      • 1.1 Ingest Node:摄入节点
      • 1.2 Ingest Pipeline:摄入管道
      • 1.3 Processor:预处理器——简单加工
      • 1.4 Painless Script:脚本——复杂加工
      • 1.5 简单实用案例
    • 二、文档/数据建模
      • 2.1 ES中如何处理关联关系
      • 2.2 对象类型
      • 2.3 嵌套对象(Nested Object)
      • 2.4 父子关联关系(Parent : Child )
      • 2.5 ElasticSearch数据建模最佳实践
        • 2.5.1 关联关系选择
        • 2.5.2 避免过多字段
        • 2.5.3 避免正则,通配符,前缀查询
        • 2.5.4 避免空值引起的聚合不准
        • 2.5.5 为索引的Mapping加入Meta 信息
    • 三、ES读写性能调优
      • 3.1 ES底层读写工作原理分析
        • 3.1.1 ES写入数据的流程
        • 3.1.2 ES读取数据的过程
      • 3.2 如何提升集群的读写性能
        • 3.2.1 提升集群读性能
        • 3.2.2 提升集群写性能
        • 3.2.3 其他一些优化建议
  • 学习总结

前言

要点

ES要掌握什么:

  1. 使用:搜索和聚合操作语法,理解分词,倒排索引,相关性算分(文档匹配度)
  2. 优化: 数据预处理,文档建模,集群架构优化,读写性能优化

阅读对象

已经掌握了基本ES使用API,了解相关性算分原理的同学

阅读导航

系列上一篇文章:《【ES专题】ElasticSearch集群架构剖析》

前置知识

  1. 掌握了基本ES使用API
  2. 了解相关性算分原理

笔记正文

一、ES数据预处理

什么是预处理?其实就是说,在数据进行CRUD之前进行的一系列自定义操作嘛。比如:

  • 将某个字段的值转换为另一种类型;
  • 将日期格式处理一下
  • 新增字段返回
  • 某些字段不需要

等等。其实大家伙想象,这些操作是不是很熟悉?无论是Mysql层,还是我们Java业务层,其实都有做过这件事情。所以,ES其实也提供了ES层的一些业务处理,并且提供了不少内置组件给我们。那这些组件是由谁完成的?其实就是我们上节课说到的一个集群角色——Ingest Node节点完成的。

要了解ES数据的预处理,有4个概念需要大家理解一下,分别如下:

1.1 Ingest Node:摄入节点

Ingest Node,直译:摄入节点。很直观了,就是摄入数据的ES进程实例。他ES5.0之后才引入的一种新的节点类型。默认配置下,每个节点都是Ingest Node。Ingest Node节点的功能前面有大概介绍过,不过我估计大伙没怎么注意。这里简述一下:

  1. 具有预处理数据的能力,可拦截lndex或 Bulk API的请求
  2. 对数据进行转换,并重新返回给Index或 Bulk APl

举个栗子:

  • 为某个字段设置默认值
  • 重命名某个字段的字段名
  • 对字段值进行Split 操作
  • 支持设置Painless脚本,对数据进行更加复杂的加工

我想大家应该多少有点感觉了吧,关于Ingest node的作用。其实在ES中,还有一个叫做LogStash的组件也能完成这些功能,具体的在下一篇笔记中讲。

1.2 Ingest Pipeline:摄入管道

ES关键词:pipeline
Ingest Pipeline,摄入管道。有什么用呢?有经验的小伙伴估计早已了然了,基本一提到【一系列处理器】肯定就存在【管道】,这已经成为了【一系列处理器】的范式了,无论什么语言都是如此。说白了,【管道】就是【处理器】的【容器】(多提一嘴,【处理器】+【管道】,通常是由【职责链】设计模式完成的)。

官方定义:管道是一系列处理器的定义,这些处理器将按照声明的顺序执行。管道由两个主要字段组成:【描述】和【处理器列表】。

1.3 Processor:预处理器——简单加工

Processor,预处理器,它ES对一些加工行为的抽象包装类。ES本身也预提供了很多内置Processors
帮我们完成数据操作了。当然,也支持通过插件的方式,实现自己的Processor。
这些内置的Processor大致有:

  • Split Processor : 将给定字段值分成一个数组
  • Remove / Rename Processor :移除一个重命名字段
  • Append : 为商品增加一个新的标签
  • Convert:将商品价格,从字符串转换成float 类型
  • Date / JSON:日期格式转换,字符串转JSON对象
  • Date lndex Name Processor︰将通过该处理器的文档,分配到指定时间格式的索引中
  • Fail Processor︰一旦出现异常,该Pipeline 指定的错误信息能返回给用户
  • Foreach Process︰数组字段,数组的每个元素都会使用到一个相同的处理器
  • Grok Processor︰日志的日期格式切割
  • Gsub / Join / Split︰字符串替换│数组转字符串/字符串转数组
  • Lowercase / upcase︰大小写转换

在这里插入图片描述

注意:不知道有没有朋友跟我一样,第一感觉会觉得预处理器不就是前面说的【过滤器】吗?不一样的,前面两篇文章提到的过滤器是【分词器】里面的【过滤器】,针对的是【搜索词】、【词项】,这里是【文档】数据。

1.4 Painless Script:脚本——复杂加工

ES关键字:script
Painless Script跟Processor一样都是为了做数据加工的。不同于Processor,Painless 通过写入一段脚本执行了更复杂加工过程。Painless Script具备以下特性:

  • 高性能 / 安全
  • 支持显示类型或者动态定义类型

Painless的用途:

  • 可以对文档字段进行加工处理。比如:
    • 更新或删除字段,处理数据聚合操作
    • Script Field:对返回的字段提前进行计算
    • Function Score:对文档的算分进行处理
  • 在lngest Pipeline中执行脚本
  • 在Reindex APl,Update By Query时,对数据进行处理

在Painless脚本中,想要访问字段,可以通过如下API进行:
在这里插入图片描述

1.5 简单实用案例

Processor使用案例:
需求:索引csdn_blogs中有一字段tags,后期需要对其进行聚合操作。tags字段的值,本应该是数组,只不过存入的时候以,做分隔符拼成字符串存进去。

1)示例数据:

#csdn_blogs数据,包含3个字段,tags用逗号间隔
PUT csdn_blogs/_doc/1
{"title":"Introducing big data......","tags":"hadoop,elasticsearch,spark","content":"You konw, for big data"
}

2)创建pipeline

# 为ES添加一个 Pipeline
PUT _ingest/pipeline/blog_pipeline
{"description": "a blog pipeline","processors": [{"split": {"field": "tags","separator": ","}},{"set":{"field": "views","value": 0}}]
}#查看Pipleline
GET _ingest/pipeline/blog_pipeline

3)使用pipeline新增一条id=2的数据

#使用pipeline更新数据
PUT csdn_blogs/_doc/2?pipeline=blog_pipeline
{"title": "Introducing cloud computering","tags": "openstack,k8s","content": "You konw, for cloud"
}

在这里插入图片描述

Painless Script使用案例:
1)示例数据:注意,相比之前的示例,这里新增了字段views表示阅读量,默认为0

DELETE csdn_blogs
PUT csdn_blogs/_doc/1
{"title":"Introducing big data......","tags":"hadoop,elasticsearch,spark","content":"You konw, for big data","views":0
}

2)使用一段脚本更新数据,注意更新的是views字段。另外这边使用了ctx的API来获取上下文中的字段值(前面介绍Painless脚本的时候有介绍过)

POST csdn_blogs/_update/1
{"script": {"source": "ctx._source.views += params.new_views","params": {"new_views":100}}
}# 查看views计数
POST csdn_blogs/_search

查询结果如下:
在这里插入图片描述

当然也可以保存脚本到ES中

#保存脚本在 Cluster State
POST _scripts/update_views
{"script":{"lang": "painless","source": "ctx._source.views += params.new_views"}
}

然后使用它们

POST csdn_blogs/_update/1
{"script": {"id": "update_views","params": {"new_views":1000}}
}# 查看views计数
POST csdn_blogs/_search

这边就不看查询结果了,就是使用另一种方式来做脚本处理而已(小声说话…)

3)查询时使用一段脚本做预处理:下面的脚本使用了script_fields,这个关键字声明的字段是临时的,不会被存入文档中。具体用法见官方文档

GET csdn_blogs/_search
{"script_fields": {"rnd_views": {"script": {"lang": "painless","source": """java.util.Random rnd = new Random();doc['views'].value+rnd.nextInt(1000);"""}}},"query": {"match_all": {}}
}

在这里插入图片描述

二、文档/数据建模

什么是文档建模?这个名词多少有点陌生。不过可以简单类比一下,让大家知道啥意思。
不知道大家有没有疑问,那就是:我在Mysql中经常遇到联表的情况,在ES中应该也有这样的需求吧,那,怎么实现呢?是的,所谓文档建模关心的就是这个东西。即文档之间、索引之间的关系,该如何联系。

2.1 ES中如何处理关联关系

关系型数据库通过【三范式】去约束、设计表之间的关系,其主要目标是减少不必要的更新,但我们作为开发都知道,有时候过于遵循所谓的【三范式】往往会有负面效果 (甚至很多我们的小伙伴还不知道所谓【三范式】)。比如:

  • 一个完全范式化设计的数据库会经常面临查询缓慢的问题。数据库越范式化,需要join的表就越多
  • 范式化节省了存储空间,但是存储空间已经变得越来越便宜
  • 范式化简化了更新,但是数据读取操作可能更多

既然【范式】会有很多副作用,那么【反范式化(Denormalize)】的设计就被提倡出来:不使用关联关系,而是宁愿在文档中保存冗余的数据拷贝。

  • 优点:无需处理Join操作,数据读取性能好。Elasticsearch可以通过压缩_source字段,减少磁盘空间的开销
  • 缺点:不适合在数据频繁修改的场景。 一条数据的改动,可能会引起很多数据的更新

关系型数据库,一般会考虑【范式】数据;在Elasticsearch,往往考虑【反范式】数据。
Elasticsearch并不擅长处理关联关系,一般会采用以下四种方法处理关联:

  • 对象类型
  • 嵌套对象(Nested Object)
  • 父子关联关系(Parent / Child )
  • 应用端关联

2.2 对象类型

ES关键字:propertiesmapping属性的子属性。用于在新建索引、更新索引的mapping时,指定对象类型的属性
用一个简单的案例来给大家伙示范一下,什么是对象类型。

案例1:CSDN博客作者信息
在ES中,通常会在每一篇博文中保留作者的信息。这种情况下,如果作者信息发生变化,需要修改相关博文的文档

上述就是【反范式化】的做法。正常我们在Mysql中,是在博文表中新增一个【作者id】,需要使用的时候才去联表查询出来作者名字。

1)定义一个博文的索引

DELETE csdn_blogs
# 设置csdn_blogs的 Mapping
PUT /csdn_blogs
{"mappings": {"properties": {"content": {"type": "text"},"time": {"type": "date"},"user": {"properties": {"city": {"type": "text"},"userid": {"type": "long"},"username": {"type": "keyword"}}}}}
}

2)插入一条示例数据

PUT /blog/_doc/1
{"content":"I like Elasticsearch","time":"2022-01-01T00:00:00","user":{"userid":1,"username":"Fox","city":"Changsha"}
}

3)查询一下博文信息

# 查询 blog信息
POST /blog/_search
{"query": {"bool": {"must": [{"match": {"content": "Elasticsearch"}},{"match": {"user.username": "Fox"}}]}}
}

查询结果省略

案例2:包含对象数组的文档
我们知道,电影通常会有多个演员,多个导演,甚至多个电影名字。然后人名在中外不同国家排列方式是不同的。我们是【姓+名】,国外不少是【名+姓】的,所以,会拆分成【first name + last name】的方式存储。在ES中,【电影】可能会通过下面这样的方式存储:
数据结构伪代码:

public class Movie {String movieName;List<Actor> actors;
}public class Actor {String firstName;String lastName;
}

1)定义一个电影索引

PUT /my_movies
{"mappings" : {"properties" : {"actors" : {"properties" : {"first_name" : {"type" : "keyword"},"last_name" : {"type" : "keyword"}}},"title" : {"type" : "text","fields" : {"keyword" : {"type" : "keyword","ignore_above" : 256}}}}}
}

2)写入一条记录

POST /my_movies/_doc/1
{"title":"Speed","actors":[{"first_name":"Keanu","last_name":"Reeves"},{"first_name":"Dennis","last_name":"Hopper"}]
}

注意:actors字段有多个值,是一个数组
3)查询记录:注意下面的bool-must,我原本的设想是:查询first-namelast-name都匹配的电影。但我们知道,下面这个搜索在我们设想中是不存在的。因为没有演员的名字叫做Keanu Hopper

# 查询电影信息
POST /my_movies/_search
{"query": {"bool": {"must": [{"match": {"actors.first_name": "Keanu"}},{"match": {"actors.last_name": "Hopper"}}]}}
}

但事实上,搜索结果如下:
在这里插入图片描述
竟然有结果出来!!我明明用的是must,但是效果上看起来跟should一样啊。点解?
这就不得不说一下,ES【对象类型】建模底层数据结构了。在【对象类型】建模中,上述2)插入的记录,在文档中,会以key-value这样的结构存在:(这个操作在ES中被称为数据扁平化,据说很重要的一种特性,但是我还没理解出来重要在哪,哈

"title":"Speed"
"actors.first_name": ["Keanu","Dennis"]
"actors.last_name": ["Reeves","Hopper"]

假设actors数组只有一个值,即如下:

POST /my_movies/_doc/1
{"title":"Speed","actors":[{"first_name":"Keanu","last_name":"Reeves"}]
}

那他在文档中记录是这样的:

"title":"Speed"
"actors.first_name": "Keanu"
"actors.last_name": "Reeves"

也正是由于这个原因,这条记录在倒排索引中的记录如下:

索引词项文档id
Keanu1
Dennis1
Reeves1
Hopper1

所以最终索引到了我们不想要的记录。怎么办呢?使用另一种对象:内嵌对象。

2.3 嵌套对象(Nested Object)

ES关键字:nestedproperties
什么是Nested Data Type?官方是这么定义的:

如果需要索引对象数组并维护数组中每个对象的独立性,则应该使用嵌套数据类型而不是对象数据类型。在内部,嵌套对象将数组中的每个对象索引为一个单独的隐藏文档,这意味着每个嵌套对象可以独立于其他对象进行查询,使用嵌套查询:

Nested数据类型,允许对象数组中的对象被独立索引。在其内部,Nested文档会被保存在两个Lucene文档中,被嵌套的对象当作隐藏文档,但是依然寄存在Nested文档上。在查询时做Join处理

这一点很重要,保存在两个文档

还是拿上面的【电影】例子给大家演示一下:

1)定义一个电影索引,注意actors字段的type

# 先删除之前创建的
DELETE /my_movies
# 创建 Nested 对象 Mapping
PUT /my_movies
{"mappings" : {"properties" : {"actors" : {"type": "nested","properties" : {"first_name" : {"type" : "keyword"},"last_name" : {"type" : "keyword"}}},"title" : {"type" : "text","fields" : {"keyword":{"type":"keyword","ignore_above":256}}}}}
}

2)写入一条记录

POST /my_movies/_doc/1
{"title":"Speed","actors":[{"first_name":"Keanu","last_name":"Reeves"},{"first_name":"Dennis","last_name":"Hopper"}]
}

3)nested查询:注意关键词nested,为什么要这么来做,见下面的分析

# Nested 查询
POST /my_movies/_search
{"query": {"bool": {"must": [{"match": {"title": "Speed"}},{"nested": {"path": "actors","query": {"bool": {"must": [{"match": {"actors.first_name": "Keanu"}},{"match": {"actors.last_name": "Hopper"}}]}}}}]}}
}

上面这条记录,实际上会被这样保存:

doc
{"title":"Speed"
}
doc_1
{"actors.first_name": "Keanu""actors.last_name": "Reeves"
}
doc_2
{"actors.first_name": "Dennis""actors.last_name": "Hopper"
}

要特别注意这个【隐藏的单独文档】的准确意义啊!正是因为是一个独立的文档,所以不能够在查询中对象.属性,而是使用专门为nested设计的nested查询;因为是隐藏的,所以我们没办法直接查询到,只能通过原文档获取到隐藏子文档。
不过虽然nested对象确实解决了多值的问题,但是大家有没有发现,因为反范式化的设计,隐藏子文档需要更新的时候,会把父文档也一起更新的,这种更新粒度是否太大了呢?

2.4 父子关联关系(Parent : Child )

ES关键字:joinrelations
Object对象和Nested对象它是有一些局限性的,那就是每次更新,可能需要重新索引整个对象(包括根对象和嵌套对象),毕竟【反范式化】了。所以ES为了兼容Join查询这种需求,设计了另一种关联关系:父子关联关系。父子关联关系有如下特征:

  • 父文档和子文档是同一个索引上的两个独立的文档。注意:独立的,显式的文档。跟嵌套的【隐藏子文档】不一样
  • 更新父文档无需重新索引子文档。子文档被添加,更新或者删除也不会影响到父文档和其他的子文档

接下来用一个简单的示例演示一下。

1)还是创建一个博客索引

DELETE /my_blogs# 设定 Parent/Child Mapping
PUT /my_blogs
{"settings": {"number_of_shards": 2},"mappings": {"properties": {"blog_comments_relation": {"type": "join","relations": {"blog": "comment"}},"content": {"type": "text"},"title": {"type": "keyword"}}}
}

在这里插入图片描述

2)插入两条父文档数据

#索引父文档
PUT /my_blogs/_doc/blog1
{"title":"Learning Elasticsearch","content":"learning ELK ","blog_comments_relation":{"name":"blog"}
}#索引父文档
PUT /my_blogs/_doc/blog2
{"title":"Learning Hadoop","content":"learning Hadoop","blog_comments_relation":{"name":"blog"}
}

在这里插入图片描述
注意,文档的id不再是以前默认的数字(当然是表面上这样),而是我们前面声明的父子关联关系字段的名称 + id

3)插入子文档数据:路由到指定的父文档所在分片上

#索引子文档
PUT /my_blogs/_doc/comment1?routing=blog1
{"comment":"I am learning ELK","username":"Jack","blog_comments_relation":{"name":"comment","parent":"blog1"}
}#索引子文档
PUT /my_blogs/_doc/comment2?routing=blog2
{"comment":"I like Hadoop!!!!!","username":"Jack","blog_comments_relation":{"name":"comment","parent":"blog2"}
}#索引子文档
PUT /my_blogs/_doc/comment3?routing=blog2
{"comment":"Hello Hadoop","username":"Bob","blog_comments_relation":{"name":"comment","parent":"blog2"}
}

在这里插入图片描述
注意:

  • 不知道大家有没有留意到,父子文档是在同一个【索引】上的,即这里的my_blogs
  • 父文档和子文档必须存在相同的分片上,能够确保查询join 的性能
  • 当指定子文档时候,必须指定它的父文档ld。使用routing参数来保证,分配到相同的分片

4)查询示例
ES关键字:parent_idhas_childhas_parent

查询所有:所有文档都显示出来了

# 查询所有文档
POST /my_blogs/_search

结果返回:(截取了部分)
在这里插入图片描述
分别查询父、子文档:只显示出来父文档信息,子文档同理

#根据父文档ID查看
GET /my_blogs/_doc/blog2#通过ID ,访问子文档
GET /my_blogs/_doc/comment3

下图是父文档结果,子文档就不截图了。
在这里插入图片描述

子文档的查询还可以通过父文档id来路由:

#通过ID和routing ,访问子文档
GET /my_blogs/_doc/comment3?routing=blog2

在这里插入图片描述

更丰富的查询示例:(不截图了)

# 通过Parent Id 查询子文档
POST /my_blogs/_search
{"query": {"parent_id": {"type": "comment","id": "blog2"}}
}# Has Child 查询,返回父文档
POST /my_blogs/_search
{"query": {"has_child": {"type": "comment","query" : {"match": {"username" : "Jack"}}}}
}# Has Parent 查询,返回相关的子文档
POST /my_blogs/_search
{"query": {"has_parent": {"parent_type": "blog","query" : {"match": {"title" : "Learning Hadoop"}}}}
}#更新子文档
PUT /my_blogs/_doc/comment3?routing=blog2
{"comment": "Hello Hadoop??","blog_comments_relation": {"name": "comment","parent": "blog2"}
}

查询所有文档的结果:

嵌套文档、父子文档横向对比

Nested ObjectParent / Child
优点文档存储在一起,读取性能高父子文档可以独立更新
缺点更新嵌套的子文档时,需要更新整个文档需要额外的内存维护关系。读取性能相对差
适用场景子文档偶尔更新,以查询为主子文档更新频繁

2.5 ElasticSearch数据建模最佳实践

2.5.1 关联关系选择
  • Object: 适合优先考虑反范式(典型的报表那种就需要反范式化)
  • Nested:当数据包含多数值对象,同时有查询需求
  • Child/Parent:关联文档更新非常频繁时
2.5.2 避免过多字段

一个文档中,最好避免大量的字段。字段过多往往会有如下问题:

  1. 过多的字段数不容易维护
  2. Mapping 信息保存在Cluster State 中,数据量过大,对集群性能会有影响
  3. 删除或者修改数据需要reindex

生产环境中,尽量不要打开 Dynamic,可以使用Strict控制新增字段的加入。

  • true :未知字段会被自动加入
  • false :新字段不会被索引,但是会保存在_source
  • strict :新增字段不会被索引,文档写入失败

ES默认最大字段数是1000,可以设置index.mapping.total_fields.limit限定最大字段数。·

2.5.3 避免正则,通配符,前缀查询

正则,通配符查询,前缀查询属于Term查询,但是性能不够好。特别是将通配符放在开头,会导致性能的灾难

案例:针对版本号的搜索

# 将字符串转对象
PUT softwares/
{"mappings": {"properties": {"version": {"properties": {"display_name": {"type": "keyword"},"hot_fix": {"type": "byte"},"marjor": {"type": "byte"},"minor": {"type": "byte"}}}}}
}#通过 Inner Object 写入多个文档
PUT softwares/_doc/1
{"version":{"display_name":"7.1.0","marjor":7,"minor":1,"hot_fix":0  }}PUT softwares/_doc/2
{"version":{"display_name":"7.2.0","marjor":7,"minor":2,"hot_fix":0  }
}PUT softwares/_doc/3
{"version":{"display_name":"7.2.1","marjor":7,"minor":2,"hot_fix":1  }
}# 通过 bool 查询,
POST softwares/_search
{"query": {"bool": {"filter": [{"match":{"version.marjor":7}},{"match":{"version.minor":2}}]}}
}
2.5.4 避免空值引起的聚合不准

ES关键字:mappings下的null_value

# Not Null 解决聚合的问题
DELETE /scores
PUT /scores
{"mappings": {"properties": {"score": {"type": "float","null_value": 0}}}
}PUT /scores/_doc/1
{"score": 100
}
PUT /scores/_doc/2
{"score": null
}POST /scores/_search
{"size": 0,"aggs": {"avg": {"avg": {"field": "score"}}}
}
2.5.5 为索引的Mapping加入Meta 信息
  • Mappings设置非常重要,需要从两个维度进行考虑
    • 功能︰搜索,聚合,排序
    • 性能︰存储的开销;内存的开销;搜索的性能
  • Mappings设置是一个迭代的过程
    • 加入新的字段很容易(必要时需要update_by_query)
    • 更新删除字段不允许(需要Reindex重建数据)
    • 最好能对Mappings 加入Meta 信息,更好的进行版本管理
    • 可以考虑将Mapping文件上传git进行管理
PUT /my_index
{"mappings": {"_meta": {"index_version_mapping": "1.1"}}
}

三、ES读写性能调优

3.1 ES底层读写工作原理分析

3.1.1 ES写入数据的流程
  1. 客户端选择一个node发送请求,通常这个node扮演协调节点的角色
  2. 协调节点对索引文档进行路由,并将请求转发到对应的节点
  3. 节点上的主分片处理请求,如果写入成功,则接着将数据同步到副本分片上,等待副本分片都报告成功,节点向协调节点报告成功
  4. 协调节点收到报告之后,再将请求结果返回到客户端

在这里插入图片描述
它的底层原理如下图所示:
在这里插入图片描述

上图涉及到一些核心概念:

segment file: 存储倒排索引的文件,每个segment本质上就是一个倒排索引,每秒都会生成一个segment文件,当文件过多时es会自动进行segment merge(合并文件),合并时会同时将已经标注删除的文档物理删除
commit point:记录当前所有可用的segment,每个commit point都会维护一个.del文件(es删除数据本质上不是物理删除),当es做删改操作时首先会在.del文件中声明某个document已经被删除,文件内记录了在某个segment内某个文档已经被删除,当查询请求过来时在segment中被删除的文件是能够查出来的,但是当返回结果时会根据commit point维护的那个.del文件把已经删除的文档过滤掉
translog日志文件: 为了防止elasticsearch宕机造成数据丢失保证可靠存储,es会将每次写入数据同时写到translog日志中
os cache:操作系统里面,磁盘文件其实都有一个东西,叫做os cache,操作系统缓存,就是说数据写入磁盘文件之前,会先进入os cache,先进入操作系统级别的一个内存缓存中去
refresh操作:将文档先保存在Index buffer中,以refresh_interval为间隔时间,定期清空buffer,生成 segment,借助文件系统缓存的特性,先将segment放在文件系统缓存中,并开放查询,以提升搜索的实时性
flush操作:刷盘操作。删除旧的translog 文件;生成Segment并写入磁盘;更新commit point并写入磁盘。ES自动完成,可优化点不多

底层原理过程解析:
1.1)数据到达主分片之后,并不是直接写入磁盘的,而是先写入到buffer中,此时,这条新的数据是不能搜索到的;同时,在这一步,也会将数据写到translog当中

为什么要这么做?这么说,几乎所有的中间件、应用等【写磁盘】之前都会先写缓存,再由缓存写入磁盘。主要是因为缓存通常位于内存中,相比磁盘,内存的读写速度要快得多。因此,将数据先写入缓存可以减少等待时间,并提高整体的处理速度

1.2)从ES6开始,新增的一步操作。一边写数据到前面说的缓存,一边写数据到translog磁盘文件里面。这个在ES6之前,默认是每30分钟,或者达到一定大小的时候才flush刷盘(发出一个commit命令),接着将segment file文件写入磁盘,清空translog。但是ES6之后,改为每次请求都直接刷盘了

什么是刷盘?刷盘,即直接写入磁盘中。为什么会有这个操作呢?因为操作系统中,也有一个缓存,是作用于系统跟硬盘之间的,道理跟上面说的一样。处处是缓存啊!!!

2) 步骤1.1)的缓存快满了,或者每隔1秒,就会将数据通过refresh操作写到新的的segment file(注意,并不会直接写入到磁盘文件中,还是跟上面一样,先写入属于系统的os cache缓存,再由缓存写入到文件)。同时更新conmmit point。写入后清空buffer

3)当segment被写到os cache的时候,此时segment可以接收外部的搜索了(据说这就是为什么说ES是【近实时】的原因,因为1秒后就能查询到)。最后os cache等待系统命令,即步骤1.2)提到的commit来调用系统函数的fsync同步数据到磁盘中,即真正写入到segment file

3.1.2 ES读取数据的过程

ES读取数据的过程分两种情况:

1)根据id查询数据的过程

  1. 根据 doc id 进行 hash,判断出来当时把 doc id 分配到了哪个 shard 上面去,从那个 shard 去查询
  2. 客户端发送请求到任意一个 node,成为 coordinate node协调节点
  3. coordinate node协调节点 对doc id进行哈希路由hash(_id) % shards_size,将请求转发到对应的节点,此时会使用 round-robin随机轮询算法,在【主分片】以及其所有【副本分片】中随机选择一个,让读请求负载均衡
  4. 接收请求的node返回 文档给coordinate node协调节点
  5. coordinate node协调节点返回文档数据给客户端

2)根据关键词查询数据的过程:多分片合并

  1. 客户端发送请求到一个 coordinate node协调节点
  2. 协调节点将搜索请求转发到所有的shard对应的primary shardreplica shard,两者都可以
  3. query phase阶段:每个shard将自己的搜索结果返回给协调节点,由协调节点进行数据的合并、排序、分页等操作,产出最终结果
  4. fetch phase阶段:接着由协调节点根据doc id去各个节点上拉取实际的文档数据,最终返回给客户端。

写请求是写入 primary shard,然后同步给所有的 replica shard;读请求可以从 primary shard 或 replica shard 读取,采用的是随机轮询算法

3.2 如何提升集群的读写性能

3.2.1 提升集群读性能

想要提升集群读取性能,通常有以下方法:

  1. 做好数据建模
    • 尽量将数据先行计算,然后保存到Elasticsearch 中,以避免查询时的 Script计算
    • 尽量使用Filter Context,利用缓存机制,减少不必要的算分
    • 结合profile,explain API分析慢查询的问题,持续优化数据模型
    • 避免使用*开头的通配符查询
  2. 优化分片
    • 避免Over Sharing。很多时候一个查询需要访问每一个分片,分片过多,会导致不必要的查询开销
    • 结合应用场景,控制单个分片的大小
    • Force-merge Read-only索引。使用基于时间序列的索引,将只读的索引进行force merge,减少segment数量
#手动force merge
POST /my_index/_forcemerge
3.2.2 提升集群写性能

想要提升集群的写性能,首先得知道优化的本质,其实是:增大写吞吐量,越高越好。
按照这个目标,结合我们ES的情况,其实可以分为【客户端写】和【服务端写】来进行优化。

客户端写:
无非就是使用多线程,或者批量写

大家应该知道批量写,bulk的作用吧?其实跟redis的管道一样的道理。不止是redis,事实上很多中间件都会用到这个思想。 【批量写】是为了节省每次跟服务之间的网络IO开销。
甚至,如果大家学过Netty的话,就会发现:连底层网络通信为了节省带宽,也可能等待数据到达一定量,或者达到一段时间后才将数据一起发送出去。这么做的目的就是为了提升网络IO效率

服务端写:注意参考前面3.1说的写原理
服务器端优化写入性能可以通过如下途径:

  1. 降低IO操作,即:尽量少写东西。比如:使用ES自动生成的文档ld;调整配置参数,如refresh interval
  2. 降低 CPU 和存储开销。比如:减少不必要分词;避免不需要的doc_values;文档的字段尽量保证相同的顺序,这样可以提高文档的压缩率
  3. 尽可能做到写入和分片的均衡负载,实现水平扩展。Shard Filtering / Write Load Balancer
  4. 调整Bulk 线程池和队列

如果需要追求极致的写入速度,可以牺牲数据可靠性及搜索实时性以换取性能:

  • 牺牲可靠性:将副本分片设置为0,写入完毕再调整回去
  • 牺牲搜索实时性:增加Refresh Interval的时间
  • 牺牲可靠性:修改Translog的配置

注意:ES 的默认设置,已经综合考虑了数据可靠性,搜索的实时性,写入速度,一般不要盲目修改。一切优化,都要基于高质量的数据建模

3.2.3 其他一些优化建议

1)建模时的优化

  • 只需要聚合不需要搜索,index设置成false
  • 不要对字符串使用默认的dynamic mapping。字段数量过多,会对性能产生比较大的影响
  • Index_options控制在创建倒排索引时,哪些内容会被添加到倒排索引中

2)降低 Refresh的频率

  • refresh_interval的数值,默认为1s 。如果设置成-1,会禁止自动refresh。这样做有如下作用:
    • 避免过于频繁的refresh,而生成过多的segment 文件
    • 但是会降低搜索的实时性
  • 增大静态配置参数indices.memory.index_buffer_size
    • 默认是10%,会导致自动触发refresh

3)降低Translog写磁盘的频率,但是会降低容灾能力

  • Index.translog.durability:默认是request,每个请求都落盘。设置成async,异步写入
  • lndex.translog.sync_interval:设置为60s,每分钟执行一次
  • Index.translog.flush_threshod_size:默认512 m,可以适当调大。当translog 超过该值,会触发flush

4)分片设定

  • 副本在写入时设为0,完成后再增加
  • 合理设置主分片数,确保均匀分配在所有数据节点上
  • Index.routing.allocation.total_share_per_node:限定每个索引在每个节点上可分配的主分片数

5)调整Bulk 线程池和队列

  • 客户端
    • 单个bulk请求体的数据量不要太大,官方建议大约5-15m
    • 写入端的 bulk请求超时需要足够长,建议60s 以上
    • 写入端尽量将数据轮询打到不同节点
  • 服务器端
    • 索引创建属于计算密集型任务,应该使用固定大小的线程池来配置。来不及处理的放入队列,线程数应该配置成CPU核心数+1,避免过多的上下文切换
    • 队列大小可以适当增加,不要过大,否则占用的内存会成为GC的负担
DELETE myindex
PUT myindex
{"settings": {"index": {"refresh_interval": "30s",  #30s一次refresh"number_of_shards": "2"},"routing": {"allocation": {"total_shards_per_node": "3"  #控制分片,避免数据热点}},"translog": {"sync_interval": "30s","durability": "async"    #降低translog落盘频率},"number_of_replicas": 0},"mappings": {"dynamic": false,     #避免不必要的字段索引,必要时可以通过update by query索引必要的字段"properties": {}}
}

学习总结

  1. 学习了ES的预处理器
  2. 弄明白了ES的读写流程,以及ES写原理

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/137293.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

springcloud二手交易平台系统源码

开发技术&#xff1a; 大等于jdk1.8&#xff0c;大于mysql5.5&#xff0c;idea&#xff08;eclipse&#xff09;&#xff0c;nodejs&#xff0c;vscode&#xff08;webstorm&#xff09; springcloud springboot mybatis vue elementui mysql 功能介绍&#xff1a; 用户端&…

时间序列预测模型实战案例(十)(个人创新模型)通过堆叠CNN、GRU、LSTM实现多元预测和单元预测

本文介绍 本篇博客为大家讲解的是通过组堆叠CNN、GRU、LSTM个数&#xff0c;建立多元预测和单元预测的时间序列预测模型&#xff0c;其效果要比单用GRU、LSTM效果好的多&#xff0c;其结合了CNN的特征提取功能、GRU和LSTM用于处理数据中的时间依赖关系的功能。通过将它们组合在…

Java根据一个List内Object的两个字段去重

背景 在Java开发过程中&#xff0c;我们经常会遇到需要对List进行去重的需求。 其中常见的情况是&#xff0c;将数组去重&#xff0c;或者将对象依据某个字段去重。这两种方式均可用set属性进行处理。 今天讨论&#xff0c;有一个List&#xff0c;且其中的元素是自定义的对象&…

【VUE+ elementUI 实现动态表头渲染】

VUE elementUI 实现动态表头渲染 1、定义 columns&#xff08;表头数据&#xff09; 和 dataList&#xff08;表格数据&#xff09; data() {return {loading: false,dataList: [{ name: 张三, sex: 男, age: 18 },{ name: 林琳, sex: 女, age: 20 },{ name: 王五, sex: 男, …

数据分析-numpy

numpy numpy numpy简介优点下载ndarray的属性输出数据类型routines 函数ndarray对象的读写操作ndarray的级联和切分级联切分 ndarray的基本运算广播机制&#xff08;Broadcast&#xff09;ndarry的聚合操作数组元素的操作numpy 数学函数numpy 查找和排序 写在最后面 简介 nump…

ChatGPT:something went wrong

今天下午不知什么原因&#xff0c;ChatGPT无法使用。我原来在使用ChatGPT for chrome&#xff0c;返回了一个答案&#xff0c;后来在网页端无法使用&#xff0c;以为是这个chrome插件泄露API KEY导致的。注销账号&#xff0c;删除API KEY后&#xff0c;wrong问题仍然存在。 我…

API是什么?解密API背后的奥秘

API&#xff0c;全称Application Programming Interface&#xff0c;是一种用于不同应用程序间通信的接口&#xff0c;它允许不同的应用程序之间交换数据和功能。API可以理解为应用程序提供给其他应用程序或开发者的接口&#xff0c;通过这个接口&#xff0c;其他应用程序或开发…

PostgreSQL 技术内幕(十一)位图扫描

扫描算子在上层计算和底层存储之间&#xff0c;向下扫描底层存储的数据&#xff0c;向上作为计算的输入源&#xff0c;在SQL的执行层中&#xff0c;起着关键的作用。顺序、索引、位图等不同类型的扫描算子适配不同的数据分布场景。然而&#xff0c;扫描算子背后的实现原理是怎样…

【JavaEESpring】认识Spring

认识Spring 1. 什么是框架2. SpringBoot 介绍2.1 Spring 的介绍2.2 SpringBoot 1. 什么是框架 框架(Framework) &#xff0c;意思是框架、机制、准则。通俗的来讲: 框架是实现某种功能的半成品, 他提供了⼀些常⽤的⼯具类, 我们在框架的基础上, 可以更加⾼效的进⾏开发 后端框…

Redis6的IO多线程分析

性能测试 机器配置 C Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 14 On-line CPU(s) list: 0-13 Mem: 62G性能 配置推荐 官方表示&#xff0c;当使用redis时有性能瓶…

《开箱元宇宙》:认识香港麦当劳通过 The Sandbox McNuggets Land 的 Web3 成功经验

McNuggets Land 是 The Sandbox 于 2023 年发布的最受欢迎的体验之一。在本期的《开箱元宇宙》系列中&#xff0c;我们采访了香港麦当劳数位顾客体验暨合作伙伴资深总监 Kai Tsang&#xff0c;来了解这一成功案例背后的策略。 在不断发展的市场营销和品牌推广领域&#xff0c;不…

Visual Studio 2022 + OpenCV 4.5.2 安装与配置教程

目录 OpenCV的下载与配置Visual Studio 2022的配置新建工程新建文件新建项目属性表环境配置测试先写一个输出将OpenCV的动态链接库添加到项目的 x64 | Debug下测试配置效果 Other OpenCV的下载与配置 参考这个OpenCV的下载与环境变量的配置&#xff1a; Windows10CLionOpenCV4…

网络原理---拿捏HTTP协议:请求和响应

文章目录 认识请求首行URLURL的格式URL的encode和decode 版本号方法GET方法POST方法GET VS POST 请求头&#xff1a;headerHostContent-Length 和 Content-TypeUser-Agent&#xff08;UA&#xff09;RefererCookie 空行正文&#xff1a;body如何构造HTTP请求&#xff1f;浏览器…

ARMday04(开发版简介、LED点灯)

开发版简介 开发板为stm32MP157AAA,附加一个拓展版 硬件相关基础知识 PCB PCB&#xff08; Printed Circuit Board&#xff09;&#xff0c;中文名称为印制电路板&#xff0c;又称印刷线路板&#xff0c;是重要的电子部件&#xff0c;是电子元器件的支撑体&#xff0c;是电子…

Linux生成随机密码和根据密码批量生成用户

cat /dev/urandom|tr -dc [:alnum:]|head -c20 生成20位数字字母的随机密码。 /dev/urandom生成随机数&#xff0c;tr -dc [:alnum:] 保留所有数字和字母&#xff0c;head -c20保留前20位。 使用原生的Linux命令生成可以说是极度安全的&#xff0c;也适用于批量用户生成的情况…

AlphaControls控件TsRadioGroup的使用

通常使用AlphaControls控件中的TsRadioGroup时&#xff0c;往往使用默认值&#xff0c;会造成TsRadioGroup标题被TsRadioGroup的ITEMs占用&#xff0c;严重影响美观&#xff1a; 解决方案&#xff0c;通过对TsRadioGroup的ContentVOffset属性&#xff0c;设置为10。即可立即改善…

处理uniapp打包后有广告的问题

1、登录平台&#xff08;开发者中心&#xff09; 2、 3、 4、 5、

回归预测 | Matlab实现PCA-PLS主成分降维结合偏最小二乘回归预测

回归预测 | Matlab实现PCA-PLS主成分降维结合偏最小二乘回归预测 目录 回归预测 | Matlab实现PCA-PLS主成分降维结合偏最小二乘回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现PCA-PLS主成分降维结合偏小二乘回归预测&#xff08;完整源码和数据) 1.输…

2023年9月少儿编程 中国电子学会图形化编程等级考试Scratch编程二级真题解析(选择题)

2023年9月scratch编程等级考试二级真题 选择题(共25题,每题2分,共50分) 1、点击绿旗,运行程序后,舞台上的图形是 A、画笔粗细为4的三角形 B、画笔粗细为5的六边形 C、画笔粗细为4的六角形 D、画笔粗细为5的三角形 答案:D 考点分析:考查积木综合使用,重点考查画笔…

伪造referer [极客大挑战 2019]Http1

打开题目 没有发现什么&#xff0c;我们查看源代码 在这里我们发现了提示 访问一下页面得到 提示说不能来自于https://Sycsecret.buuoj.cn&#xff0c;我们尝试访问一下这个url 发现访问不了 我们bp抓包一下 伪造个referer头 referer:https://Sycsecret.buuoj.cn 发包过去…