竞赛 行人重识别(person reid) - 机器视觉 深度学习 opencv python

文章目录

  • 0 前言
  • 1 技术背景
  • 2 技术介绍
  • 3 重识别技术实现
    • 3.1 数据集
    • 3.2 Person REID
      • 3.2.1 算法原理
      • 3.2.2 算法流程图
  • 4 实现效果
  • 5 部分代码
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习行人重识别(person reid)系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 技术背景

行人重识别技术,是智能视频监控系统的关键技术之一,其研宄是针对特定目标行人的视频检索识别问题。行人再识别是一种自动的目标判定识别技术,它综合地运用了计算机视觉技术、机器学习、视频处理、图像分析、模式识别等多种相关技术于监控系统中,其主要描述的是在多个无重叠视域的摄像头监控环境之下,通过相关算法判断在某个镜头下出现过的感兴趣的目标人物是否在其他摄像头下再次出现。

2 技术介绍

在视频监控系统中,行人再识别任务的整体框架如下图所示:
—个监控系统由多个视域不相交的监控摄像头组成,摄像机的位置可以随时更改,同时也可以随时增加或减少摄像机。不两监控摄像头所摄取的画面、视角等各不相同。在这样的监控系统中,对行人的动向监测是,至关重要的。

对行人的监控主要基于以下三个基本的模块:

在这里插入图片描述

  • 行人检测:
    行人检测的目标是在图片中定位到行人的具体位置。这一步骤仅涉及到对于静止的单张图片的处理,而没有动态的处理,没有时间序列上的相关分析。

  • 行人轨迹跟踪:
    行人轨迹跟踪的主要任务是在一段时间内提供目标任务的位置移动信息。与行人检测不同,轨迹跟踪与时间序列紧密相关。行人轨迹跟踪是在行人检测的基础上进行的。

  • 行人再识别:
    行人再识别任务的目标是在没有相重合视域的摄像头或摄像机网络内的不同背景下的许多行人中中识别某个特定行人。行人再识别的


在此基础上,用训练出的模型进行学习从而判断得出某个摄像头下的行人与另一摄像头下的目标人物为同一个人。在智能视频监控系统中的行人再识别任务具有非常广阔的应用前景。行人再识别的应用与行人检测、目标跟踪、行人行为分析、敏感事件检测等等都有着紧密的联系,这些分析处理技术对于公安部门的刑侦工作和城市安防建设工作有着重要的意义。

3 重识别技术实现

3.1 数据集

目前行人再识别的研究需要大量的行人数据集。行人再识别的数据集主要是通过在不同区域假设无重叠视域的多个摄像头来采集拍摄有行人图像的视频,然后对视频提取帧,对于视频帧图像采用人工标注或算法识别的方式进行人体检测及标注来完成的。行人再识别数据集中包含了跨背景、跨时间、不同拍摄角度下、各种不同姿势的行人图片,如下图所示。

在这里插入图片描述

3.2 Person REID

3.2.1 算法原理

给定N个不同的行人从不同的拍摄视角的无重叠视域摄像机捕获的图像集合,行人再识别的任务是学习一个模型,该模型可以尽可能减小行人姿势和背景、光照等因素带来的影响,从而更好地对行人进行整体上的描述,更准确地对不同行人图像之间的相似度进行衡量。

我这里使用注意力相关的特征的卷积神经网络。该基础卷积神经网络架构可以由任何卷积神经网络模型代替,例如,VGG-19,ResNet-101。

该算法的核心模块在于注意力学习模型。

3.2.2 算法流程图

在这里插入图片描述

4 实现效果

在多行人场景下,对特定行人进行寻找
在这里插入图片描述

5 部分代码

import argparseimport timefrom sys import platformfrom models import *from utils.datasets import *from utils.utils import *from reid.data import make_data_loaderfrom reid.data.transforms import build_transformsfrom reid.modeling import build_modelfrom reid.config import cfg as reidCfgdef detect(cfg,data,weights,images='data/samples',  # input folderoutput='output',  # output folderfourcc='mp4v',  # video codecimg_size=416,conf_thres=0.5,nms_thres=0.5,dist_thres=1.0,save_txt=False,save_images=True):# Initializedevice = torch_utils.select_device(force_cpu=False)torch.backends.cudnn.benchmark = False  # set False for reproducible resultsif os.path.exists(output):shutil.rmtree(output)  # delete output folderos.makedirs(output)  # make new output folder############# 行人重识别模型初始化 #############query_loader, num_query = make_data_loader(reidCfg)reidModel = build_model(reidCfg, num_classes=10126)reidModel.load_param(reidCfg.TEST.WEIGHT)reidModel.to(device).eval()query_feats = []query_pids  = []for i, batch in enumerate(query_loader):with torch.no_grad():img, pid, camid = batchimg = img.to(device)feat = reidModel(img)         # 一共2张待查询图片,每张图片特征向量2048 torch.Size([2, 2048])query_feats.append(feat)query_pids.extend(np.asarray(pid))  # extend() 函数用于在列表末尾一次性追加另一个序列中的多个值(用新列表扩展原来的列表)。query_feats = torch.cat(query_feats, dim=0)  # torch.Size([2, 2048])print("The query feature is normalized")query_feats = torch.nn.functional.normalize(query_feats, dim=1, p=2) # 计算出查询图片的特征向量############# 行人检测模型初始化 #############model = Darknet(cfg, img_size)# Load weightsif weights.endswith('.pt'):  # pytorch formatmodel.load_state_dict(torch.load(weights, map_location=device)['model'])else:  # darknet format_ = load_darknet_weights(model, weights)# Eval modemodel.to(device).eval()# Half precisionopt.half = opt.half and device.type != 'cpu'  # half precision only supported on CUDAif opt.half:model.half()# Set Dataloadervid_path, vid_writer = None, Noneif opt.webcam:save_images = Falsedataloader = LoadWebcam(img_size=img_size, half=opt.half)else:dataloader = LoadImages(images, img_size=img_size, half=opt.half)# Get classes and colors# parse_data_cfg(data)['names']:得到类别名称文件路径 names=data/coco.namesclasses = load_classes(parse_data_cfg(data)['names']) # 得到类别名列表: ['person', 'bicycle'...]colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(classes))] # 对于每种类别随机使用一种颜色画框# Run inferencet0 = time.time()for i, (path, img, im0, vid_cap) in enumerate(dataloader):t = time.time()# if i < 500 or i % 5 == 0:#     continuesave_path = str(Path(output) / Path(path).name) # 保存的路径# Get detections shape: (3, 416, 320)img = torch.from_numpy(img).unsqueeze(0).to(device) # torch.Size([1, 3, 416, 320])pred, _ = model(img) # 经过处理的网络预测,和原始的det = non_max_suppression(pred.float(), conf_thres, nms_thres)[0] # torch.Size([5, 7])if det is not None and len(det) > 0:# Rescale boxes from 416 to true image size 映射到原图det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()# Print results to screen image 1/3 data\samples\000493.jpg: 288x416 5 persons, Done. (0.869s)print('%gx%g ' % img.shape[2:], end='')  # print image size '288x416'for c in det[:, -1].unique():   # 对图片的所有类进行遍历循环n = (det[:, -1] == c).sum() # 得到了当前类别的个数,也可以用来统计数目if classes[int(c)] == 'person':print('%g %ss' % (n, classes[int(c)]), end=', ') # 打印个数和类别'5 persons'# Draw bounding boxes and labels of detections# (x1y1x2y2, obj_conf, class_conf, class_pred)count = 0gallery_img = []gallery_loc = []for *xyxy, conf, cls_conf, cls in det: # 对于最后的预测框进行遍历# *xyxy: 对于原图来说的左上角右下角坐标: [tensor(349.), tensor(26.), tensor(468.), tensor(341.)]if save_txt:  # Write to filewith open(save_path + '.txt', 'a') as file:file.write(('%g ' * 6 + '\n') % (*xyxy, cls, conf))# Add bbox to the imagelabel = '%s %.2f' % (classes[int(cls)], conf) # 'person 1.00'if classes[int(cls)] == 'person':#plot_one_bo x(xyxy, im0, label=label, color=colors[int(cls)])xmin = int(xyxy[0])ymin = int(xyxy[1])xmax = int(xyxy[2])ymax = int(xyxy[3])w = xmax - xmin # 233h = ymax - ymin # 602# 如果检测到的行人太小了,感觉意义也不大# 这里需要根据实际情况稍微设置下if w*h > 500:gallery_loc.append((xmin, ymin, xmax, ymax))crop_img = im0[ymin:ymax, xmin:xmax] # HWC (602, 233, 3)crop_img = Image.fromarray(cv2.cvtColor(crop_img, cv2.COLOR_BGR2RGB))  # PIL: (233, 602)crop_img = build_transforms(reidCfg)(crop_img).unsqueeze(0)  # torch.Size([1, 3, 256, 128])gallery_img.append(crop_img)if gallery_img:gallery_img = torch.cat(gallery_img, dim=0)  # torch.Size([7, 3, 256, 128])gallery_img = gallery_img.to(device)gallery_feats = reidModel(gallery_img) # torch.Size([7, 2048])print("The gallery feature is normalized")gallery_feats = torch.nn.functional.normalize(gallery_feats, dim=1, p=2)  # 计算出查询图片的特征向量# m: 2# n: 7m, n = query_feats.shape[0], gallery_feats.shape[0]distmat = torch.pow(query_feats, 2).sum(dim=1, keepdim=True).expand(m, n) + \torch.pow(gallery_feats, 2).sum(dim=1, keepdim=True).expand(n, m).t()# out=(beta∗M)+(alpha∗mat1@mat2)# qf^2 + gf^2 - 2 * qf@gf.t()# distmat - 2 * qf@gf.t()# distmat: qf^2 + gf^2# qf: torch.Size([2, 2048])# gf: torch.Size([7, 2048])distmat.addmm_(1, -2, query_feats, gallery_feats.t())# distmat = (qf - gf)^2# distmat = np.array([[1.79536, 2.00926, 0.52790, 1.98851, 2.15138, 1.75929, 1.99410],#                     [1.78843, 1.96036, 0.53674, 1.98929, 1.99490, 1.84878, 1.98575]])distmat = distmat.cpu().numpy()  # : (3, 12)distmat = distmat.sum(axis=0) / len(query_feats) # 平均一下query中同一行人的多个结果index = distmat.argmin()if distmat[index] < dist_thres:print('距离:%s'%distmat[index])plot_one_box(gallery_loc[index], im0, label='find!', color=colors[int(cls)])# cv2.imshow('person search', im0)# cv2.waitKey()print('Done. (%.3fs)' % (time.time() - t))if opt.webcam:  # Show live webcamcv2.imshow(weights, im0)if save_images:  # Save image with detectionsif dataloader.mode == 'images':cv2.imwrite(save_path, im0)else:if vid_path != save_path:  # new videovid_path = save_pathif isinstance(vid_writer, cv2.VideoWriter):vid_writer.release()  # release previous video writerfps = vid_cap.get(cv2.CAP_PROP_FPS)width = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))height = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (width, height))vid_writer.write(im0)if save_images:print('Results saved to %s' % os.getcwd() + os.sep + output)if platform == 'darwin':  # macosos.system('open ' + output + ' ' + save_path)print('Done. (%.3fs)' % (time.time() - t0))if __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help="模型配置文件路径")parser.add_argument('--data', type=str, default='data/coco.data', help="数据集配置文件所在路径")parser.add_argument('--weights', type=str, default='weights/yolov3.weights', help='模型权重文件路径')parser.add_argument('--images', type=str, default='data/samples', help='需要进行检测的图片文件夹')parser.add_argument('-q', '--query', default=r'query', help='查询图片的读取路径.')parser.add_argument('--img-size', type=int, default=416, help='输入分辨率大小')parser.add_argument('--conf-thres', type=float, default=0.1, help='物体置信度阈值')parser.add_argument('--nms-thres', type=float, default=0.4, help='NMS阈值')parser.add_argument('--dist_thres', type=float, default=1.0, help='行人图片距离阈值,小于这个距离,就认为是该行人')parser.add_argument('--fourcc', type=str, default='mp4v', help='fourcc output video codec (verify ffmpeg support)')parser.add_argument('--output', type=str, default='output', help='检测后的图片或视频保存的路径')parser.add_argument('--half', default=False, help='是否采用半精度FP16进行推理')parser.add_argument('--webcam', default=False, help='是否使用摄像头进行检测')opt = parser.parse_args()print(opt)with torch.no_grad():detect(opt.cfg,opt.data,opt.weights,images=opt.images,img_size=opt.img_size,conf_thres=opt.conf_thres,nms_thres=opt.nms_thres,dist_thres=opt.dist_thres,fourcc=opt.fourcc,output=opt.output)

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/136757.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++】STL容器适配器——queue类的使用指南(含代码使用)(18)

前言 大家好吖&#xff0c;欢迎来到 YY 滴C系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过C的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; 目录 一、queue 类——基本介绍二、queue 类…

【赠书第3期】用ChatGPT轻松玩转机器学习与深度学习

文章目录 前言 1 机器学习 2 深度学习 3 使用ChatGPT进行机器学习和深度学习 4 推荐图书 5 粉丝福利 前言 机器学习和深度学习是当前最热门的技术领域之一&#xff0c;这些技术正在不断地改变我们的生活和工作方式。ChatGPT 是一款基于大规模预训练模型的自然语言处理工…

【Python基础】 Python设计模式之单例模式介绍

单例模式 1.设计模式2.单例设计模式的应用场景3.new方法4. Python 中的单例 1.设计模式 设计模式 是 前人工作的总结和提炼&#xff0c;通常&#xff0c;被人们广泛流传的设计模式都是针对 某一特定问题 的成熟的解决方案使用 设计模式 是为了可重用代码、让代码更容易被他人理…

python解析xmind统计测试用例/测试点 个数及执行情况

前言&#xff1a;统计的是每个分支最后一个节点的状态 xmind版本 23.0911172 标记打开位置 标记规则如下 解释&#xff1a; res {"total": 0, "pass": 0, "fail": 0, "no_result": 0, "unfinished": 0, "now_fail…

深度学习检测小目标常用方法

前言 在深度学习目标检测中&#xff0c;特别是人脸检测中&#xff0c;小目标、小人脸的检测由于分辨率低&#xff0c;图片模糊&#xff0c;信息少&#xff0c;噪音多&#xff0c;所以一直是一个实际且常见的困难问题。不过在这几年的发展中&#xff0c;也涌现了一些提高小目标…

机器/深度学习模型最优化问题详解及优化算法汇总

前言 其实最优化问题&#xff0c;从小学开始学习数学的时候就可以说已经接触到了&#xff0c;在我印象中有个问题&#xff0c;用一个平底锅煎饼&#xff0c;每次只能放2只饼&#xff0c;煎一只饼要2分钟&#xff08;正反各用1分钟&#xff09;&#xff0c;煎三只饼要几分钟。这…

C语言--汉诺塔【内容超级详细】

今天与大家分享一下如何用C语言解决汉诺塔问题。 目录 一.前言 二.找规律⭐ 三.总结⭐⭐⭐ 四.代码实现⭐⭐ 一.前言 有一部很好看的电影《猩球崛起》⭐&#xff0c;说呀&#xff0c;人类为了抗击癌症发明了一种药物&#x1f357;&#xff0c;然后给猩猩做了实验&#xff0…

【Java】I/O流—缓冲流的基础入门和文件拷贝的实战应用

&#x1f33a;个人主页&#xff1a;Dawn黎明开始 &#x1f380;系列专栏&#xff1a;Java ⭐每日一句&#xff1a;你能坚持到什么程度&#xff0c;决定你能达到什么高度 &#x1f4e2;欢迎大家关注&#x1f50d;点赞&#x1f44d;收藏⭐️留言&#x1f4dd; 文章目录 一.&…

基于springboot实现福聚苑社区团购平台系统项目【项目源码】

基于springboot实现福聚苑社区团购平台系统演示 Javar技术 Java是一种网络脚本语言&#xff0c;广泛运用于web应用开发&#xff0c;可以用来添加网页的格式动态效果&#xff0c;该语言不用进行预编译就直接运行&#xff0c;可以直接嵌入HTML语言中&#xff0c;写成js语言&…

git增加右键菜单

有次不小心清理系统垃圾&#xff0c;把git右击菜单搞没了&#xff0c;下面是恢复方法 将下面代码存为.reg文件&#xff0c;双击后导出生效&#xff0c;注意&#xff0c;你安装的git必须是默认C盘的&#xff0c;如果换了地方要改下面注册表文件中相关的位置 Windows Registry …

Windows搭建minio存储

minio功能类似以ftp 小白教程&#xff0c;一看就会&#xff0c;一做就成。 1.下载软件 https://dl.min.io/server/minio/release/windows-amd64/minio.exe 2.部署配置 我是在D盘下创建了minio目录 minio.exe是软件minio.log是日志&#xff08;不用创建&#xff09;minio900…

骑士巡游问题

一、骑士巡游问题 题目描述&#xff1a;骑士在8*8的国际象棋棋盘上进行巡游&#xff0c;当指定骑士出发的位置后&#xff08;x,y&#xff09;&#xff0c;能输出骑士遍历棋盘的所有路径坐标。 输出效果&#xff1a; 代码&#xff08;请在visual stdio下运行&#xff0c;Dev-C…

虚幻引擎:如何进行关卡切换?

一丶非无缝切换 在切换的时候会先断开连接,等创建好后才会链接,造成体验差 蓝图中用到的节点是 Execute Console Command 二丶无缝切换 链接的时候不会断开连接,中间不会出现卡顿,携带数据转换地图 1.需要在gamemode里面开启无缝漫游,开启之后使用上面的切换方式就可以做到无缝…

Scala中编写多线程爬虫程序并做可视化处理

在Scala中编写一个爬虫程序来爬取店铺商品并进行可视化处理&#xff0c;需要使用Selenium和Jsoup库来操作网页。在这个例子中&#xff0c;我们将使用多线程来提高爬取速度。 1、首先&#xff0c;我们需要引入所需的库&#xff1a; import org.openqa.selenium.By import org.o…

Milvus Cloud——Agent 框架工作方式

Agent 框架工作方式 我们以 AutoGPT 为例&#xff0c;看看一个 Agent 框架具体是如何工作的&#xff1a; AutoGPT[2] 使用 GPT-4 来生成任务、确定优先级并执行任务&#xff0c;同时使用插件进行互联网浏览和其他访问。AutoGPT 使用外部记忆来跟踪它正在做什么并提供上下文&am…

软文推广中如何搭建媒体矩阵

媒体矩阵简单理解就是在不同的媒体平台上&#xff0c;根据运营目标和需求&#xff0c;建立起全面系统的媒体布局&#xff0c;进行多平台同步运营。接下来媒介盒子就来和大家聊聊&#xff0c;企业在软文推广过程中为什么需要搭建媒体矩阵&#xff0c;又该如何搭建媒体矩阵。 一、…

Python基础教程之十九:Python优先级队列示例

1.什么是优先队列 优先级队列是一种抽象数据类型&#xff0c;类似于常规队列或堆栈数据结构&#xff0c;但每个元素还具有与之关联的“优先级”。在优先级队列中&#xff0c;优先级高的元素先于优先级低的元素提供。如果两个元素具有相同的优先级&#xff0c;则将根据其在队列…

安防监控EasyCVR视频汇聚平台无法接入Ehome5.0是什么原因?该如何解决?

视频云存储/安防监控EasyCVR视频汇聚平台基于云边端智能协同&#xff0c;支持海量视频的轻量化接入与汇聚、转码与处理、全网智能分发、视频集中存储等。安防平台EasyCVR拓展性强&#xff0c;视频能力丰富&#xff0c;具体可实现视频监控直播、视频轮播、视频录像、云存储、回放…

Python机器学习算法入门教程(第四部分)

接着Python机器学习算法入门教程&#xff08;第三部分&#xff09;&#xff0c;继续展开描述。 十九、信息熵是什么 通过前两节的学习&#xff0c;我们对于决策树算法有了大体的认识&#xff0c;本节我们将从数学角度解析如何选择合适的“特征做为判别条件”&#xff0c;这里…

内存条选购注意事项(电脑,笔记本)

电脑内存条的作用、选购技巧以及注意事项详解 - 郝光明的个人空间 - OSCHINA - 中文开源技术交流社区 现在的电脑直接和内存条联系 电脑上的所有输入和输出都只能依靠内存条 现在买双条而不是单条 买两个相同的内存条最好 笔记本先分清是低电压还是标准电压&#xff0c;DD…