基于ChatGPT聊天的零样本信息提取7.25

基于ChatGPT聊天的零样本信息提取

  • 摘要
  • 介绍
  • ChatIE
    • 用于零样本IE的多轮 QA
  • 实验
  • 总结

在这里插入图片描述

摘要

零样本信息提取(IE)旨在从未注释的文本中构建IE系统。由于很少涉及人类干预,因此具有挑战性。

零样本IE减少了数据标记所需的时间和工作量。最近对大型语言模型(LLMs,GFI-3,ChatGPT)的研究在零样本设置下显示出了良好的性能,从而激励我们研究基于提示的方法。

在这项工作中,我们询问是否可以通过直接提示LLM来构建强IE模型。
具体来说,我们将零样本IE任务转换为多轮问题解答问题,使用两阶段框架(ChatIE)。借助ChatGPT的强大功能,我们在三个IE任务上对我们的框架进行了广泛的评估:实体关系三重提取、命名实体识别和事件提取。

在两种语言的六个数据集上的经验结果表明,ChatIE在几种数据集上取得了令人印象深刻的性能,甚至超过了一些完整的模型。

介绍

信息提取旨在将非结构化文本中的结构化信息提取为结构化数据格式,包括实体关系提取(RE)、命名实体识别(NER)、事件提取(EE)等任务。这是自然语言处理中一项有趣的重要任务。处理大量的标签数据总是非常繁忙、劳动密集且耗时。

最近的工作在大规模预训练大语言模型上,例如GPT-3。
InstructGPT和ChatGPT表明,LLM即使不调整参数,仅使用少数示例作为说明,也能很好地执行各种下游任务。因此,这是一个时间问题:LLM提示在同一框架下执行零样本IE任务是否可行。这也是一个挑战,因为包含多个相关元素的结构化数据很容易通过一次预测来提取,尤其是对于像RE这样的复杂任务。以前的工作将这些复杂任务分解为不同的部分,并训练几个模块来解决每个部分。

基于这些线索,在本文中,我们转向ChatGPT,并假设ChatGPT天生具有在交互模式下存放统一正确零样本IE模型的能力。

更具体地说,我们提出了ChatIE,将零样本任务转化为一个多回合问题,并使用两阶段框架回答问题。

  1. 在第一阶段,我们的目的是找出一个句子中可能存在的相应元素类型。
  2. 在第二阶段,我们对来自阶段1的每个元素类型进行链式信息提取。

在这里插入图片描述
每个阶段都通过一个多回合的QA过程来实现。在每一轮,我们都会根据设计的模板和之前提取的信息构建提示,以询问ChatGPT。最后,我们将每个转弯的结果组成结构化数据。我们对IE、NER和EE进行了广泛的实验任务,包括两种语言的六个数据集:英语和汉语。

实验结果表明,当不使用ChatIE的普通ChatGPT无法用原始任务指令解决IE时,当IE任务分解为多个更简单、更容易的子任务时,我们提出的在ChatGPT上实例化的两阶段框架成功了。令人惊讶的是,ChatIE在几个数据集上取得了令人印象深刻的性能,甚至超过了一些全镜头模型。

ChatIE

用于零样本IE的多轮 QA

将IE框架分解成两个阶段,每个阶段都包含几轮QA,参考与ChatGPT的对话。

在第一阶段,我们的目标是在三个任务中分别找出句子中存在的实体、关系或事件的类型。这样,我们过滤掉不存在的元素类型,以减少搜索空间和假设的复杂性,有助于提取信息。

在第二阶段,我们在第一阶段提取的元素类型以及相应的任务特定方案的基础上进一步提取相关信息。

第一阶段:对于这个例子而言,这一步仅包含了一轮QA。为找到在句子中呈现的元素类型,我们首先利用任务特定的 TypeQues模板和元素类型列表 来构建问题。然后我们将问题和句子组合到ChatGPT中。为了便于提取答案,我们要求系统 以列表形式回复 。如果这些内容不包含任何元素类型,系统将生成一个带有NONE Token的响应。

第二阶段:该阶段通常包括多个QA轮次。在那之前,我们根据任务的方案设计了一系列特定的元素类型 ChainExtractionTemplate。ChainExtractionTemplates定义了一个问题链模板,链的长度通常为为1。但对于复杂的方案,如实体关系三重提取中的复数二元值提取,链的长度大于1。在这一点上,一个元素的提取可能依赖于另一个先前的元素,因此我们称之为链式模板(chained template)。
我们按照先前提取的元素类型的顺序以及ChainExtractionTemplates的理论执行多回合QA。为了生成问题,我们需要检索具有元素类型的模板,并在必要时填充相应的槽。然后我们访问ChatGPT并获得响应。最后,我们根据每一轮提取的元素组成结构化信息。同样,为了便于答案提取,我们要求系统以表格形式回复。如果没有提取任何内容,系统将生成一个带有NONE的令牌响应。

实验

总结

这是知识抽取和语言模型的结合,重点在于提出的基于ChatGPT的多轮QA框架——ChatIE,用于零样本信息提取。

ChatIE将每个回合的结果合成最终的结构化结果。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/13547.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DevOps-Jenkins

Jenkins Jenkins是一个可扩展的持续集成引擎,是一个开源软件项目,旨在提供一个开放易用的软件平台,使软件的持续集成变成可能。 官网 应用场景 场景一 研发人员上传开发好的代码到github代码仓库需要将代码下载nginx服务器部署手动下载再…

递归实现 组合问题+排列问题(DFS)

目录 递归实现排列型枚举 递归实现排列类型枚举 II 递归实现组合型枚举 递归实现组合型枚举 II 递归实现指数型枚举 递归实现指数型枚举 II 递归不是循环,递归利用了系统栈,只要是函数都会被系统管理。当执行到函数地址入口时就会为函数在系统栈上分…

mac 删除自带的ABC输入法保留一个搜狗输入法,搜狗配置一下可以减少很多的敲击键盘和鼠标点击次数

0. 背景 对于开发者来说,经常被中英文切换输入法所困扰,我这边有一个方法,删除mac默认的ABC输入法 仅仅保留搜狗一个输入法,配置一下搜狗输入:哪些指定为英文输入,哪些指定为中文输入(符号也可…

wps图表怎么改横纵坐标,MLP 多层感知器和CNN卷积神经网络区别

目录 wps表格横纵坐标轴怎么设置? MLP (Multilayer Perceptron) 多层感知器 CNN (Convolutional Neural Network) 卷积神经网络 多层感知器MLP,全连接网络,DNN三者的关系 wps表格横纵坐标轴怎么设置? 1、打开表格点击图的右侧…

arm 函数栈回溯

大概意思就是arm每个函数开始都会将PC、LR、SP以及FP四个寄存器入栈。 下面我们看一下这四个寄存器里面保存的是什么内存 arm-linux-gnueabi-gcc unwind.c -mapcs -w -g -o unwind&#xff08;需要加上-mapcs才会严格按照上面说的入栈&#xff09; #include <stdio.h> …

Android 面试题 线程间通信 六

&#x1f525; 主线程向子线程发送消息 Threadhandler&#x1f525; 子线程中定义Handler&#xff0c;Handler定义在哪个线程中&#xff0c;就跟那个线程绑定&#xff0c;在线程中绑定Handler需要调用Looper.prepare(); 方法&#xff0c;主线程中不调用是因为主线程默认帮你调用…

怎么在线修改图片?分享一个图片修改工具

无论是在个人或商业领域&#xff0c;我们都需要使用高质量的图片来传达信息或提高品牌形象。大尺寸的图片也会占据大量的存储空间和带宽&#xff0c;影响网站的加载速度和用户体验。因此&#xff0c;我们需要一种高效的工具来解决这个问题。今天向大家介绍一款非常实用的图片处…

Abaqus 导出单元刚度矩阵和全局刚度矩阵

Abaqus 导出单元刚度矩阵和全局刚度矩阵 首次创建&#xff1a;2023.7.29 最后更新&#xff1a;2023.7.29 如有什么改进的地方&#xff0c;欢迎大家讨论&#xff01; 详细情况请查阅&#xff1a;Abaqus Analysis User’s Guide 一、Abaqus 导出单元刚度矩阵 1.生成单元刚度矩阵…

Linux CentOS快速安装VNC并开启服务

以下是在 CentOS 上安装并开启 VNC 服务的步骤&#xff1a; 安装 VNC 服务器软件包。运行以下命令&#xff1a; sudo yum install tigervnc-server 输出 $ sudo yum install tigervnc-server Loaded plugins: fastestmirror, langpacks Repository epel is missing name i…

教雅川学缠论04-笔

笔由3部分组成&#xff1a; 顶分型K线底分型&#xff0c;或者 底分型K线顶分型 注意&#xff1a;笔加一起至少7根K线&#xff0c;因为一个底分型至少3根&#xff0c;K先至少1个&#xff0c;顶分型至少3根 下图中红色线段就是一个标准的笔&#xff0c;它始于一个底分型&#xff…

Visual C++中的虚函数和纯虚函数(以外观设计模式为例)

我是荔园微风&#xff0c;作为一名在IT界整整25年的老兵&#xff0c;今天来说说Visual C中的虚函数和纯虚函数。该系列帖子全部使用我本人自创的对比学习法。也就是当C学不下去的时候&#xff0c;就用JAVA实现同样的代码&#xff0c;然后再用对比的方法把C学会。 直接说虚函数…

【SpringCloud Alibaba】(四)使用 Feign 实现服务调用的负载均衡

在上一文中&#xff0c;我们实现了服务的自动注册与发现功能。但是还存在一个很明显的问题&#xff1a;如果用户微服务和商品微服务在服务器上部署多份的话&#xff0c;之前的程序无法实现服务调用的负载均衡功能。 本文就带着大家一起实现服务调用的负载均衡功能 1. 负载均衡…

LayUi 树形组件tree 实现懒加载模式,展开父节点时异步加载子节点数据

如题。 效果图&#xff1a; //lazy属性为true&#xff0c;点开时才加载 引用代码&#xff1a; <link href"~/Content/layui-new/css/layui.css" rel"stylesheet" /><form id"form" class"layui-form" style"margin-to…

AC695-按键处理-带UI

AC695-按键修改 消息发出 对应界面处理

【算法和数据结构】257、LeetCode二叉树的所有路径

文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引&#xff0c;可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析&#xff1a;首先看这道题的输出结果&#xff0c;是前序遍历。然后需要找到从根节点到叶子节点的所有路径&#xff…

【图论】树上差分(点差分)

一.题目 输入样例&#xff1a; 5 10 3 4 1 5 4 2 5 4 5 4 5 4 3 5 4 3 4 3 1 3 3 5 5 4 1 5 3 4 输出样例&#xff1a;9 二 .分析 我们可以先建一棵树 但我们发现&#xff0c;这样会超时。 所以&#xff0c;我们想到树上差分 三.代码 /* 5 10 3 4 1 5 4 2 5 4 5 4 5 4 3 5 …

IOS UICollectionView 设置cell大小不生效问题

代码设置flowLayout.itemSize 单元格并没有改变布局大小&#xff0c; 解决办法如下图&#xff1a;把View flow layout 的estimate size 设置为None&#xff0c;上面设置的itemSize 生效了。

物联网阀控水表计量准确度如何?

物联网阀控水表是一种新型的智能水表&#xff0c;它采用了先进的物联网技术&#xff0c;可以通过远程控制和监测水表的运行情况&#xff0c;实现更加精准的水量计量和费用结算。那么&#xff0c;物联网阀控水表的计量准确度如何呢&#xff1f;下面我们将从以下几个方面进行详细…

PHP 3des加解密新旧方法可对接加密

一、旧3des加解密方法 <?php class Encrypt_3DES {//加密秘钥&#xff0c;private $_key;private $_iv;public function __construct($key, $iv){$this->_key $key;$this->_iv $iv;}/*** 对字符串进行3DES加密* param string 要加密的字符串* return mixed 加密成…

【SpringⅢ】Spring 的生命周期

目录 &#x1f96a;1 Bean 的作用域 &#x1f969;1.1 singleton&#xff1a;单例模式 &#x1f359;1.2 prototype&#xff1a;原型模式 &#x1f371;1.3 Bean 的其他作用域 &#x1f35c;2 Spring 生命周期(执行流程) &#x1f958;2.1 启动容器 &#x1f372; 2.2 读…