OpenGL_Learn08(坐标系统)

目录

1. 概述

2. 局部空间

3. 世界空间

4. 观察空间

5. 剪裁空间

6. 初入3D

7. 3D旋转


1. 概述

OpenGL希望在每次顶点着色器运行后,我们可见的所有顶点都为标准化设备坐标(Normalized Device Coordinate, NDC)。也就是说,每个顶点的xyz坐标都应该在-1.01.0之间,超出这个坐标范围的顶点都将不可见。我们通常会自己设定一个坐标的范围,之后再在顶点着色器中将这些坐标变换为标准化设备坐标。然后将这些标准化设备坐标传入光栅器(Rasterizer),将它们变换为屏幕上的二维坐标或像素。 

  • 局部空间(Local Space,或者称为物体空间(Object Space))
  • 世界空间(World Space)
  • 观察空间(View Space,或者称为视觉空间(Eye Space))
  • 裁剪空间(Clip Space)
  • 屏幕空间(Screen Space)

 为了将坐标从一个坐标系变换到另一个坐标系,我们需要用到几个变换矩阵,最重要的几个分别是模型(Model)、观察(View)、投影(Projection)三个矩阵。我们的顶点坐标起始于局部空间(Local Space),在这里它称为局部坐标(Local Coordinate),它在之后会变为世界坐标(World Coordinate),观察坐标(View Coordinate),裁剪坐标(Clip Coordinate),并最后以屏幕坐标(Screen Coordinate)的形式结束。

  1. 局部坐标是对象相对于局部原点的坐标,也是物体起始的坐标。
  2. 下一步是将局部坐标变换为世界空间坐标(平移+旋转),世界空间坐标是处于一个更大的空间范围的。这些坐标相对于世界的全局原点,它们会和其它物体一起相对于世界的原点进行摆放。
  3. 接下来我们将世界坐标变换为观察空间坐标,使得每个坐标都是从摄像机或者说观察者的角度进行观察的。
  4. 坐标到达观察空间之后,我们需要将其投影到裁剪坐标。裁剪坐标会被处理至-1.0到1.0的范围内,并判断哪些顶点将会出现在屏幕上。
  5. 最后,我们将裁剪坐标变换为屏幕坐标,我们将使用一个叫做视口变换(Viewport Transform)的过程。视口变换将位于-1.0到1.0范围的坐标变换到由glViewport函数所定义的坐标范围内。最后变换出来的坐标将会送到光栅器,将其转化为片段。

2. 局部空间

局部空间是指物体所在的坐标空间,即对象最开始所在的地方。想象你在一个建模软件(比如说Blender)中创建了一个立方体。你创建的立方体的原点有可能位于(0, 0, 0),即便它有可能最后在程序中处于完全不同的位置。甚至有可能你创建的所有模型都以(0, 0, 0)为初始位置。

我们一直使用的那个箱子的顶点是被设定在-0.5到0.5的坐标范围中,(0, 0)是它的原点。这些都是局部坐标。

3. 世界空间

是指顶点相对于世界的坐标,世界空间也有一个中心。

4.  观察空间

观察空间经常被人们称之OpenGL的摄像机(Camera)(所以有时也称为摄像机空间(Camera Space)或视觉空间(Eye Space))。

观察空间是将世界空间坐标转化为用户视野前方的坐标而产生的结果。因此观察空间就是从摄像机的视角所观察到的空间。而这通常是由一系列的位移和旋转的组合来完成,平移/旋转场景从而使得特定的对象被变换到摄像机的前方。这些组合在一起的变换通常存储在一个观察矩阵(View Matrix)里,它被用来将世界坐标变换到观察空间。

观察空间中,原点是摄像机位置,+x轴指向右方,+y轴指向上方,+z轴指向后方。需要注意的是摄像机的前方是-z轴,因为unity中观察空间使用的是右手坐标系,模型空间和世界空间使用的是左手坐标系,这个只需要记住就行了。

在观察变换的时候,是把世界空间作为观察空间的子空间来变换的,因此,我们可以把对摄像机的 变换想象为对世界空间的变换。根据上图,世界空间的原点从观察空间的原点出发进行了(-30, -180, 0)的旋转,然后又进行了(-0.5,-5,-8.5)的移动。由此我们可以构建变换矩阵以求出A点在观察空间中的坐标。

也就是比如观察原点是A(3,-1,9)(在世界中的坐标) ,世界空间原点是B(0,0,0) 。那么A=BM ,M为变换矩阵。此时模型都需要与M相乘,得到位于观察点A的所看的顶点坐标。

5. 剪裁空间

裁剪空间也称作齐次裁剪空间,把顶点从观察空间转换到裁剪空间中的矩阵叫做裁剪矩阵,也被称作投影矩阵。

我们最终在摄像机中可以看到的区域是由视锥体决定的,视锥体就是我们可以看到的部分在计算机中的几何抽象,视锥体的边界以外的部分不渲染。视锥体由六个平面包围而成,这些平面被称作裁剪平面。

视锥体有两种投影类型:一种是正交投影(平行投影),一种是透视投影。

视锥体的六个平面当中,上下左右四个平面相当于望远镜的镜筒,而近裁剪平面和远裁剪平面则决定了你可以看到的最近和最远的距离 。

为了将顶点坐标从观察变换到裁剪空间,我们需要定义一个投影矩阵(Projection Matrix),它指定了一个范围的坐标,比如在每个维度上的-1000到1000。投影矩阵接着会将在这个指定的范围内的坐标变换为标准化设备坐标的范围(-1.0, 1.0)。所有在范围外的坐标不会被映射到在-1.0到1.0的范围之间,所以会被裁剪掉。在上面这个投影矩阵所指定的范围内,坐标(1250, 500, 750)将是不可见的,这是由于它的x坐标超出了范围,它被转化为一个大于1.0的标准化设备坐标,所以被裁剪掉了。

一旦所有顶点被变换到裁剪空间,最终的操作——透视除法(Perspective Division)将会执行,在这个过程中我们将位置向量的x,y,z分量分别除以向量的齐次w分量;透视除法是将4D裁剪空间坐标变换为3D标准化设备坐标的过程。这一步会在每一个顶点着色器运行的最后被自动执行。

上图所示,它的第一个参数定义了fov的值,它表示的是视野(Field of View),并且设置了观察空间的大小。如果想要一个真实的观察效果,它的值通常设置为45.0f,但想要一个末日风格的结果你可以将其设置一个更大的值。第二个参数设置了宽高比,由视口的宽除以高所得。第三和第四个参数设置了平截头体的平面。我们通常设置近距离为0.1f,而远距离设为100.0f。所有在近平面和远平面内且处于平截头体内的顶点都会被渲染。


当你把透视矩阵的 near 值设置太大时(如10.0f),OpenGL会将靠近摄像机的坐标(在0.0f和10.0f之间)都裁剪掉,这会导致一个你在游戏中很熟悉的视觉效果:在太过靠近一个物体的时候你的视线会直接穿过去。

透视投影和正射投影的区别 

6. 初入3D

 在开始进行3D绘图时,我们首先创建一个模型矩阵。这个模型矩阵包含了位移、缩放与旋转操作,它们会被应用到所有物体的顶点上,以变换它们到全局的世界空间。让我们变换一下我们的平面,将其绕着x轴旋转,使它看起来像放在地上一样。这个模型矩阵看起来是这样的:

glm::mat4 model;
model = glm::rotate(model, glm::radians(-55.0f), glm::vec3(1.0f, 0.0f, 0.0f));

通过将顶点坐标乘以这个模型矩阵,我们将该顶点坐标变换到世界坐标。

texture.fs

#version 330 core
out vec4 FragColor;in vec3 ourColor;
in vec2 TexCoord;uniform float mixValue;//texture sampler
uniform sampler2D textureone;
uniform sampler2D texturetwo;void main()
{FragColor = mix(texture(textureone,TexCoord),texture(texturetwo,TexCoord),mixValue);
}

texture.vs

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec2 aTexCorrd;out vec2 TexCoord;uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;void main()
{gl_Position=projection*view*model*vec4(aPos,1.0);TexCoord=vec2(aTexCorrd.x,aTexCorrd.y);
}

main.cpp

#include <glad/glad.h>
#include <GLFW/glfw3.h>#include <iostream>
#include "stb_image.h"
#include <cmath>
#include "shader.h"#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void processInput(GLFWwindow* window);// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;float mixValue = 0.2f;int main() {//1.初始化配置glfwInit();glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);#ifdef __APPLE__glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GLFW_TRUE);
#endif // __APPLE__//2.gltf 窗口创建GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LeranOpenGL", NULL, NULL);if (window == NULL) {std::cout << "Failed to create GLFW window" << std::endl;glfwTerminate();return -1;}glfwMakeContextCurrent(window);glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);//3. 加载所有GL函数指针if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)) {std::cout << "Failed to initialize GLAD" << std::endl;return -1;}Shader ourShader("./texture.vs", "./texture.fs");//4. 设置顶点数据float vertices[] = {// positions          // colors           // texture coords0.5f,  0.5f, 0.0f, 1.0f, 1.0f, // top right0.5f, -0.5f, 0.0f, 1.0f, 0.0f, // bottom right-0.5f, -0.5f, 0.0f, 0.0f, 0.0f, // bottom left-0.5f,  0.5f, 0.0f, 0.0f, 1.0f  // top left };unsigned int indices[] = {0, 1, 3, // first triangle1, 2, 3  // second triangle};unsigned int VBO, VAO, EBO;glGenVertexArrays(1, &VAO);glGenBuffers(1, &VBO);glGenBuffers(1,&EBO);//元素缓冲对象:Element Buffer Object,EBO glBindVertexArray(VAO);//复制顶点数组到缓冲区中供opengl使用glBindBuffer(GL_ARRAY_BUFFER, VBO);glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);//设置顶点属性指针glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)0);glEnableVertexAttribArray(0);//设置纹理属性指针glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)(3 * sizeof(float)));glEnableVertexAttribArray(1);//加载和创建纹理unsigned int textureone,texturetwo;glGenTextures(1, &textureone);glBindTexture(GL_TEXTURE_2D, textureone);//设置纹理环绕参数glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);//设置纹理过滤参数glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);//加载图像和生成mipmapsint width, height, nrChannels;stbi_set_flip_vertically_on_load(true);std::string filePath = R"(D:\CPlusProject\LearnOpenGL\DataSet\container.jpg)";unsigned char* data = stbi_load(filePath.c_str(), &width, &height, &nrChannels, 0);if (data) {glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data);glGenerateMipmap(GL_TEXTURE_2D);}else {std::cout << "Failed to load texture" << std::endl;}stbi_image_free(data);glGenTextures(1, &texturetwo);glBindTexture(GL_TEXTURE_2D, texturetwo);//设置纹理环绕参数glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);//设置纹理过滤参数glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);//加载图像和生成mipmapsfilePath = R"(D:\CPlusProject\LearnOpenGL\DataSet\awesomeface.png)";unsigned char* data2 = stbi_load(filePath.c_str(), &width, &height, &nrChannels, 0);if (data2) {glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data2);glGenerateMipmap(GL_TEXTURE_2D);}else {std::cout << "Failed to load texture" << std::endl;}stbi_image_free(data2);ourShader.use();glUniform1i(glGetUniformLocation(ourShader.ID, "textureone"), 0);//二选一ourShader.setInt("texturetwo", 1);//二选一//5. 循环渲染while (!glfwWindowShouldClose(window)) {processInput(window);// renderglClearColor(0.2f, 0.3f, 0.3f, 1.0f);glClear(GL_COLOR_BUFFER_BIT);//绑定纹理glActiveTexture(GL_TEXTURE0);glBindTexture(GL_TEXTURE_2D, textureone);glActiveTexture(GL_TEXTURE1);glBindTexture(GL_TEXTURE_2D, texturetwo);ourShader.setFloat("mixValue", mixValue);// create transformationsglm::mat4 model = glm::mat4(1.0f); // make sure to initialize matrix to identity matrix firstglm::mat4 view = glm::mat4(1.0f);glm::mat4 projection = glm::mat4(1.0f);model = glm::rotate(model, glm::radians(-55.0f), glm::vec3(1.0f, 0.0f, 0.0f));//注意,我们将矩阵向我们要进行移动场景的反方向移动view = glm::translate(view, glm::vec3(0.0f, 0.0f, -3.0f));projection = glm::perspective(glm::radians(45.0f), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);// retrieve the matrix uniform locationsunsigned int modelLoc = glGetUniformLocation(ourShader.ID, "model");unsigned int viewLoc = glGetUniformLocation(ourShader.ID, "view");// pass them to the shaders (2 different ways)glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));glUniformMatrix4fv(viewLoc, 1, GL_FALSE, &view[0][0]);glUniformMatrix4fv(glGetUniformLocation(ourShader.ID, "projection"), 1, GL_FALSE, &projection[0][0]);ourShader.use();glBindVertexArray(VAO);glDrawElements(GL_TRIANGLES,6,GL_UNSIGNED_INT,0);glfwSwapBuffers(window);glfwPollEvents();}glDeleteVertexArrays(1, &VAO);glDeleteBuffers(1, &VBO);glDeleteBuffers(1, &EBO);glfwTerminate();return 0;}// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
// ---------------------------------------------------------------------------------------------------------
void processInput(GLFWwindow* window)
{if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)glfwSetWindowShouldClose(window, true);if (glfwGetKey(window, GLFW_KEY_UP) == GLFW_PRESS) {std::cout << "up" << std::endl;mixValue += 0.001f;if (mixValue >= 1.0f) {mixValue = 1.0f;}}if (glfwGetKey(window, GLFW_KEY_DOWN) == GLFW_PRESS){std::cout << "down" << std::endl;mixValue -= 0.001f; // change this value accordingly (might be too slow or too fast based on system hardware)if (mixValue <= 0.0f)mixValue = 0.0f;}std::cout << "mixValue:" << mixValue <<std::endl;
}// glfw: whenever the window size changed (by OS or user resize) this callback function executes
// ---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{// make sure the viewport matches the new window dimensions; note that width and // height will be significantly larger than specified on retina displays.glViewport(0, 0, width, height);
}

我们的顶点坐标已经使用模型、观察和投影矩阵进行变换了,最终的物体应该会:

  • 稍微向后倾斜至地板方向。
  • 离我们有一些距离。
  • 有透视效果(顶点越远,变得越小)。

7. 3D旋转

 改一下模型随着时间旋转

model = glm::rotate(model, (float)glfwGetTime() * glm::radians(50.0f), glm::vec3(0.5f, 1.0f, 0.0f));

一个正方体6个面,一个面2个三角形,每个三角形3个顶点

glDrawArrays(GL_TRIANGLES, 0, 36);

顶点数据 

	//4. 设置顶点数据float vertices[] = {-0.5f, -0.5f, -0.5f,  0.0f, 0.0f,0.5f, -0.5f, -0.5f,  1.0f, 0.0f,0.5f,  0.5f, -0.5f,  1.0f, 1.0f,0.5f,  0.5f, -0.5f,  1.0f, 1.0f,-0.5f,  0.5f, -0.5f,  0.0f, 1.0f,-0.5f, -0.5f, -0.5f,  0.0f, 0.0f,-0.5f, -0.5f,  0.5f,  0.0f, 0.0f,0.5f, -0.5f,  0.5f,  1.0f, 0.0f,0.5f,  0.5f,  0.5f,  1.0f, 1.0f,0.5f,  0.5f,  0.5f,  1.0f, 1.0f,-0.5f,  0.5f,  0.5f,  0.0f, 1.0f,-0.5f, -0.5f,  0.5f,  0.0f, 0.0f,-0.5f,  0.5f,  0.5f,  1.0f, 0.0f,-0.5f,  0.5f, -0.5f,  1.0f, 1.0f,-0.5f, -0.5f, -0.5f,  0.0f, 1.0f,-0.5f, -0.5f, -0.5f,  0.0f, 1.0f,-0.5f, -0.5f,  0.5f,  0.0f, 0.0f,-0.5f,  0.5f,  0.5f,  1.0f, 0.0f,0.5f,  0.5f,  0.5f,  1.0f, 0.0f,0.5f,  0.5f, -0.5f,  1.0f, 1.0f,0.5f, -0.5f, -0.5f,  0.0f, 1.0f,0.5f, -0.5f, -0.5f,  0.0f, 1.0f,0.5f, -0.5f,  0.5f,  0.0f, 0.0f,0.5f,  0.5f,  0.5f,  1.0f, 0.0f,-0.5f, -0.5f, -0.5f,  0.0f, 1.0f,0.5f, -0.5f, -0.5f,  1.0f, 1.0f,0.5f, -0.5f,  0.5f,  1.0f, 0.0f,0.5f, -0.5f,  0.5f,  1.0f, 0.0f,-0.5f, -0.5f,  0.5f,  0.0f, 0.0f,-0.5f, -0.5f, -0.5f,  0.0f, 1.0f,-0.5f,  0.5f, -0.5f,  0.0f, 1.0f,0.5f,  0.5f, -0.5f,  1.0f, 1.0f,0.5f,  0.5f,  0.5f,  1.0f, 0.0f,0.5f,  0.5f,  0.5f,  1.0f, 0.0f,-0.5f,  0.5f,  0.5f,  0.0f, 0.0f,-0.5f,  0.5f, -0.5f,  0.0f, 1.0f};

 OpenGL存储它的所有深度信息于一个Z缓冲(Z-buffer)中,也被称为深度缓冲(Depth Buffer)。GLFW会自动为你生成这样一个缓冲(就像它也有一个颜色缓冲来存储输出图像的颜色)。深度值存储在每个片段里面(作为片段的z值),当片段想要输出它的颜色时,OpenGL会将它的深度值和z缓冲进行比较,如果当前的片段在其它片段之后,它将会被丢弃,否则将会覆盖。这个过程称为深度测试(Depth Testing),它是由OpenGL自动完成的。

需要增加glEnable(GL_DEPTH_TEST);因为默认是关闭状态。

因为我们使用了深度测试,我们也想要在每次渲染迭代之前清除深度缓冲(否则前一帧的深度信息仍然保存在缓冲中)。就像清除颜色缓冲一样,我们可以通过在glClear函数中指定DEPTH_BUFFER_BIT位来清除深度缓冲:

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

还有两个例子将在OpenGL_Learn09进行练习

坐标系统 - LearnOpenGL CN (learnopengl-cn.github.io)

Shader学习(8)各种坐标空间的定义和变换演示 - 知乎 (zhihu.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/135367.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

FMCW雷达论文速览 | TRS 2023, 基于FMCW雷达的多天线高精度测距算法及性能分析

注1:本文系“最新论文速览”系列之一,致力于简洁清晰地介绍、解读最新的顶会/顶刊论文 TRS 2023 | High Accuracy Multi-antenna Ranging Algorithm and Performance Analysis for FMCW Radar 论文原文:https://ieeexplore.ieee.org/document/10309162 Z. Xu, S. Qi and P. Zh…

SpringBoot定时任务打成jar 引入到新的项目中后并自动执行

一、springBoot开发定时任务 ①&#xff1a;连接数据库实现新增功能 1. 引入依赖 <dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><optional>true</optional> </dependency> <dependen…

2023年度API安全状况详解

随着云计算和移动应用的快速发展&#xff0c;API&#xff08;应用程序接口&#xff09;已成为不可或缺的技术组成部分。然而&#xff0c;API的广泛使用也带来了安全风险。本文将探讨2023年的API安全状况&#xff0c;并介绍了一些应对这些安全挑战的最佳实践。 引言 随着全球互联…

深度学习入门-基于Python的理论与实现摘要记录

基本是《深度学习入门-基于Python的理论与实现》的复制粘贴&#xff0c;以作为日后的检索和查询使用 感知机 感知机接收多个输入信号&#xff0c;输出一个信号。 感知机原理 感知机接收多个输入信号&#xff0c;输出一个信号。 图2-1是一个接收两个输入信号的感知机的例子。…

网络工程师回顾学习(第一部分)

根据书本目录&#xff0c;写下需要记忆的地方&#xff1a; 参考之前的笔记&#xff1a; 网络工程师回答问题_one day321的博客-CSDN博客 重构第一部分需要记忆的&#xff1a; 第一章&#xff1a;计算机网络概论 计算机网络的定义和分类&#xff1a;计算机网络是指将地理位…

IPv6详解

目录: 第一部分 IPv6的诞生背景和引起的主要变化 第二部分 IPv6数据报的基本首部和扩展首部 第三部分 IPv6地址 第四部分 IPv4向IPv6过渡 第一部分 IPv6的诞生背景和引起的主要变化 一.IPv6的诞生背景 IPv4存在设计缺陷: IPv4的设计者最初并没有想到该协议会在全球范围内广…

centos7.9 postgresql 16.0 源码安装部署

postgresql 16.0 源码安装部署 环境准备 系统主机名IP地址centos7.9postgres192.168.200.56 软件准备 postgresql-16.0.tar.gz https://ftp.postgresql.org/pub/source/v16.0/postgresql-16.0.tar.gz依赖安装 yum -y install systemd-devel readline readline-devel zlib-devel…

2023辽宁省数学建模B题数据驱动的水下导航适配区分类预测完整原创论文分享(python求解)

大家好呀&#xff0c;从发布赛题一直到现在&#xff0c;总算完成了辽宁省数学建模B题完整的成品论文。 本论文可以保证原创&#xff0c;保证高质量。绝不是随便引用一大堆模型和代码复制粘贴进来完全没有应用糊弄人的垃圾半成品论文。 B用Python&#xff0b;SPSSPRO求解&…

RabbitMQ 消息中间件

消息中间件 1、简介 消息中间件也可以称消息队列&#xff0c;是指用高效可靠的消息传递机制进行与平台无关的数据交流&#xff0c;并基于数据通信来进行分布式系统的集成。通过提供消息传递和消息队列模型&#xff0c;可以在分布式环境下扩展进程的通信。 当下主流的消息中间…

【腾讯云 TDSQL-C Serverless 产品体验】以TDSQL-C Mysql Serverless 作为数据中心爬取豆瓣图书数据

【腾讯云 TDSQL-C Serverless 产品体验】以TDSQL-C Mysql Serverless 作为数据中心爬取豆瓣图书数据 文章目录 【腾讯云 TDSQL-C Serverless 产品体验】以TDSQL-C Mysql Serverless 作为数据中心爬取豆瓣图书数据背景TDSQL-C Serverless Mysql介绍以TDSQL-C Mysql Serverless 作…

记录两个Excel导出出现的问题

问题一&#xff1a;导出数据时&#xff0c;这行代码返回null&#xff0c;导致导出excel失败&#xff1b; Workbook workbook ExcelExportUtil.exportExcel(params, map);解决&#xff1a;排查出来&#xff0c;是因为版本问题&#xff0c;autopoi版本是1.2.1&#xff1b; 升级…

时间序列预测:深度学习、机器学习、融合模型、创新模型实战案例(附代码+数据集+原理介绍)

本文介绍->给大家推荐一下我的时间序列预测专栏&#xff0c;本专栏平均质量分98分&#xff0c;而且本专栏目前免费阅读&#xff0c;其中涉及机器学习、深度学习、融合模型、个人创新模型、数据分析等一系列有关时间序列的专栏&#xff0c;其中的实战的案例不仅有简单的模型类…

Vue中的 配置项 setup

setup 是 Vue3 中的一个全新的配置项&#xff0c;值为一个函数。 setup 是所有 Composition API&#xff08;组合式API&#xff09;的入口&#xff0c;是 Vue3 语法的基础。 组件中所用到的数据、方法、计算属性等&#xff0c;都需要配置在 setup 中。 setup 会在 beforeCre…

从业务到软件架构——软件建模

一、问题 1.架构到底是什么&#xff1f;架构和业务之间到底什么关系&#xff1f; 2.好的架构的设计出发点是什么&#xff1f;好的架构应该是什么样的&#xff1f; 作为一个计算机领域的词汇&#xff0c;架构的定义是&#xff1a;有关软件整体结构与组件的抽象描述&#xff0c…

C# OpenCvSharp 去除文字中的线条

效果 中间过程效果 项目 代码 using OpenCvSharp; using System; using System.Drawing; using System.Windows.Forms; using static System.Net.Mime.MediaTypeNames;namespace OpenCvSharp_Demo {public partial class frmMain : Form{public frmMain(){InitializeComponent…

Linux开发板安装Ubuntu标准桌面环境(或其他桌面环境)

我们每入手一款开发板&#xff0c;一般配套的固件系统都会默认运行相应厂商定制的桌面环境&#xff08;在一些桌面环境上定制的&#xff09;。这个时候有些同学可能不喜欢厂商定制的桌面系统想要安装其他桌面系统比如我们虚拟机上常用的Ubuntu标准桌面系统&#xff08;不建议因…

毫米波雷达技术的医疗创新:开启无创检测与监测的新时代

随着科技的不断进步&#xff0c;毫米波雷达技术正日益成为医疗领域的一项引人注目的创新。其无创性质、高分辨率和多功能性为医学诊断和监测带来了新的可能性。本文将深入探讨毫米波雷达技术在医疗创新中的应用&#xff0c;着眼于无创检测与监测领域的突破性发展。 1. 毫米波雷…

Python中的乘法matmul()

torch.matmul() 将两个张量相乘划分成了五种情形&#xff1a; 一维 一维、二维 二维、一维 二维、二维 一维、涉及到三维及三维以上维度的张量的乘法。 1.如果两个张量都是一维的&#xff0c;即 torch.Size([n]) &#xff0c;此时返回两个向量的点积。作用与 torch.dot() …

idea使用gradle教程 (idea gradle springboot)2024

这里白眉大叔&#xff0c;写一下我工作时候idea怎么使用gradle的实战步骤吧 ----windows 环境----------- 1-本机安装gradle 环境 &#xff08;1&#xff09;下载gradle Gradle需要JDK的支持&#xff0c;安装Gradle之前需要提前安装JDK8及以上版本 https://downloads.gra…

jenkins Java heap space

jenkins Java heap space&#xff0c;是内存不够。 两个解决方案&#xff1a; 一&#xff0c;修改配置文件 windows系统中&#xff0c;找到Jenkins的安装路径&#xff0c; 修改jenkins.xml 将 -Xmx256m 改为 -Xmx1024m 或者更大 重启jenkins服务。 二&#xff0c;jenkins增…