C++入门学习(4)引用 (讲解拿指针比较)

上期回顾

        在学习完函数重载之后,我们可以使用多个重名函数进行操作,会发现C++真的是弥补了好多C语言的不足之处,真的不禁感概一下,时代的进步是需要人去做出改变的,而不是一味的使用啊!所以我们今天继续学一下C++对C语言的指针的改变吧!

一、引用的诞生

        在C语言中,指针的使用是很复杂的,涉及了二级指针,三级指针乃至我们很少见的多级指针,这会让我们使用起来很麻烦,程序的可读性很差,如果你不是一个功底很深的程序员,根本就要花上很长时间才会略知一二。

        但是我们在C++中并不是摒弃了指针,而是发明了一个新的东西,在某些场合可以代替指针----引用!

二、引用的概念

        那什么是引用呢?

        我们语文中的引用是不是给某个东西起个别名,然后再用双引号引起来。在现实生活中,我们会有很多别名,比如李逵,在家叫“铁牛”,江湖人称“黑旋风”。这都是引用,所以我们C++中的引用也不例外,就是给一个变量起别名。

        我们来一起思考一个问题,C++中的引用,会开辟一个新的内存空间吗?因为在C语言中指针会开辟空间的。

        我们还是以现实生活为例,你有很多别名,那就有很多个你吗?肯定不是吧!

        所以我们C++的引用,也是只有一个空间的,我们只是给变量起了个别名,但是引用是跟它引用的变量共用一块内存空间的。

概念:引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空间,它和它引用的变量共用同一块内存空间

我们了解了概念之后,那引用是如何使用的呢?

三、引用的使用

数据类型引用变量名 = 引用实体

注意:引用的数据类型要和引用实体数据类型一致(不一致的情况我们放在常引用讲解

#include <iostream>
using namespace std;
int main()
{int a = 3;int&a1 = a;cout << "a = "<< a << endl << "a1 = "<< a1 << endl;return 0;
}

        看到下面的输出结果,也印证了引用是给变量取别名

四、引用的特性

4.1 引用必须初始化

        如果我们写了这样的一段代码:是编译不过去的,会报错,正是因为引用没有初始化出现的错误。我们可以这样理解,引用实体都没有,哪里来的引用呢?就像一个人根本不存在,他就不可能有别名的。

#include <iostream>
using namespace std;
int main()
{int a = 3;int&a1;return 0;
}

4.2 引用的改变 会 改变引用实体

 那如果是这样的代码呢?我们在此基础上➕了一行a1++,改变引用会改变引用实体吗?

#include <iostream>
using namespace std;
int main()
{int a = 3;int&a1 = a;a1++;cout << "a = "<< a << endl << "a1 = "<< a1 << endl;return 0;
}

答案是一定的,因为引用跟引用实体共用同一个空间,改变引用就是改变引用实体。

4.3 引用不改变指向,也不可以同时引用多个实体

        那一个引用可以引用多个实体吗?或者可以改变引用指向的对象吗?因为我们C语言的指针可以改变指向,所以我们来探讨一下,比如下面这段代码:

#include <iostream>
using namespace std;
int main()
{int a = 3;int&a1 = a;int b = 5;a1 = b;cout << "a = "<< a << endl << "a1 = "<< a1 << endl;cout << "a的地址为:"<< &a << endl;cout << "a1的地址为:"<< &a1 << endl;cout << "b的地址为:"<< &b << endl;return 0;
}

        我们可以看到,虽然把b的值赋给了a1,但是没有改变引用的指向,a1的地址还是跟a一样的,引用跟指针的区别之一也显现出来了,所以我们可以得出下面两个结论:

1. 引用不可以引用多个对象;

2. 引用不可以改变指向(指向的对象);

4.4 一个实体可以有多个引用

在日常生活中,你可以有很多个别名,所以在C++中,一个实体也可以有多个引用。

#include <iostream>
using namespace std;
int main()
{int a = 3;int& a1 = a;int& a2 = a;int& a3 = a;cout << "a = "<< a << endl;cout << "a1 = "<< a1 << endl;cout << "a2 = "<< a2 << endl;cout << "a3 = "<< a3 << endl;return 0;
}

因为一个实体可以有多个引用,所以这个输出就一定都会是3的。

        我相信大家一定会有这样的疑问,我们上面所做的事情,C语言的指针也可以做呀,没什么特别的嘛,大家不要着急,继续看下去,引用使用的地方并不是在这里哦!

        我们可以发现,目前的引用都是在引用变量,那是否可以引用常量或者是常变量呢?接下来是我们要讲的重点之一:

五、常引用

在学习之前,我们要先知道这个概念

权限:一般是指我们可以操作的范围,使用的范围,权限只可以平移和缩小,不可以放大

了解之后,我们就开始对常引用的学习吧!

那什么是常引用呢?就是对常量和常变量的引用,但是一定要记住权限,来看下面的代码:

#include <iostream>
using namespace std;
int main()
{const int a = 3;int& a1 = a;return 0;
}

这段代码可以正常运行吗?

我们先来分析一下,在程序中我们定义了一个常变量a,a本来是变量,但是被const修饰了,变得不可被修改,所以权限是 “只读”,然而我们用int类型的引用来去引用a是不可以的,因为我们的引用变量a1是int类型的,权限是“读和写”,可以被修改。所以这里的权限是被放大了,a1可以修改,a不可以修改,权限被放大,该程序错误

那怎么弄才是对的呢?还是得看权限只能平移和缩小,所以我们更改了代码:

#include <iostream>
using namespace std;
int main()
{const int a = 3;const int& a1 = a;return 0;
}

这段代码中,a是常变量,引用变量a1也是常变量,这是权限的平移,程序正确。

那有没有权限缩小的呢?当然有,来看下面代码:

#include <iostream>
using namespace std;
int main()
{int a = 3;const int& a1 = a;return 0;
}

这段代码就是a本来可以修改,是“读写”,然后我们的引用变量a1是➕const修饰的,权限是“只读”,这里就是权限的缩小,程序正确。

以上都是对常变量的引用,那如何来引用常量呢?

猜对了,还是靠权限来:

#include <iostream>
using namespace std;
int main() 
{const int &a1 = 3;return 0;
}

我们的常量,也是不可被修改的,权限是“只读”,所以要引用常量的时候,要加上const,把权限也变成“只读”

六、引用和引用实体的数据类型不同

当我们了解了这些之后,我们要填一下上面埋的坑,当引用和引用实体的数据类型不一样的时候,如何引用呢?

我们要了解一个概念,当类型不同的时候,一定会发生类型转换,比如下面的代码:

#include <stdio.h>
int main()
{int a = 3;double b = a;printf("a = %d\nb = %lf",a,b);return 0;
}

我们先定义了一个整形变量a,再将a变量赋值给double类型的b,两个类型不同,会发生隐式类型转换,就是把a转换成double类型,再赋值给b,那我们的a的数据类型是什么呢?

从上面可以看出a还是整型,但是不是把a转换成double之后,再赋值给b的吗?怎么a还是int类型?我们带着这样的疑问,去学习一个新的知识: 

凡是涉及到类型的转换,都会产生一个临时变量,存放转换的值。这个临时变量具有常属性

这也就解释了为什么a还是int类型。

我们用图解的方法来看一下:

我们在了解上面的概念之后,看下面的代码:

#include <iostream>
using namespace std;
int main()
{int a = 3;const double& b = a;return 0;
}

我们定义了一个int类型的变量a,用double类型的引用变量去引用a,因为类型不同,会发生类型转换,但本质是先创建一个double类型的中间变量,再把a的值转换到这个中间变量中,由这个中间变量赋值给我们的b,为什么要➕const,因为这个中间变量具有常属性。

七、引用的使用场景

其实在上面我们仅仅是在介绍引用该怎么使用,没有介绍引用都用在哪里,所以接下来我们来学习引用使用场景。

7.1 做函数参数

我们在C语言中写一个交换函数,是需要传地址的,也就是用到一级指针:

void Swap(int* x,int* y)
{int tmp = *x;*x = *y;*y = tmp;
}

而在C++中,我们可以用引用来解决这个问题:

因为引用就是引用实体的别名,所以改变引用就是改变引用实体。

void Swap(int& x,int& y)
{int tmp = x;x = y;y = tmp;
}

7.2 做返回值

第二个用途就是用引用当返回值

但是有一个条件:函数返用引用作为返回值的时候,返回值不可以被销毁

下面的例子主要是讲解,我们用引用做返回值的时候,返回值不可以被销毁。

我们先看这样的一段代码:

我们是定义了一个函数Count,里面实现的是简单的n++,n最后是1,然后将n的值返回,可是n是函数里面创建的一个临时变量啊,临时变量出了作用域就销毁了

而我们函数的返回值是n的引用,引用实体销毁了,引用还能正常使用吗?肯定不能的对吧,但是这里要分两种情况,ret可能是1,也可能是随机值,这主要看编辑器销毁的速度。

int& Count()
{int n = 0;n++;// ...return n;
}
using namespace std;
int main()
{int& ret = Count();cout << ret << endl;return 0;
}

如果我们是下面的代码呢?打印出来的结果又是什么呢?

很神奇吧,一个是3可以理解,有可能是z没有被销毁,但是后面怎么是10了呢?

这是因为我们函数栈帧是可以复用的,所以我们的那个空间本来是3,后来虽然被销毁了,又被征用了,变成10了。而我们的引用还是指向那个位置的,所以就变成10了,但是也可能是随机值。

int& Add(int x,int y)
{int z = x + y;return z;
}
using namespace std;
int main()
{int& ret = Add(1,2);cout << ret << endl;Add(3,7);cout << ret << endl;return 0;
}

但是有没有什么办法来解决这样的问题呢?也就是保证返回值不被销毁。

我们可以定义一个静态变量就可以了,因为静态变量是在堆上开辟的,函数的销毁不会影响静态变量。

需要注意的一点就是:局部的静态变量只可以初始化一次

多次进入这个函数,只会执行一次初始化,剩下的都跳过

这样我们就可以正确的返回z的引用了,

int& Add(int x,int y)
{static int z = x + y;return z;
}
using namespace std;
int main()
{int& ret = Add(1,2);cout << ret << endl;return 0;
}

所以我们的我们函数返回值要是引用的话,返回值不呢被销毁

八、传值和传引用的效率比较

以值作为参数或者返回值类型,在传参和返回期间,函数不会直接传递实参或者将变量本身直接返回,而是传递实参或者返回变量的一份临时的拷贝,因此用值作为参数或者返回值类型,效率是非常低下的,尤其是当参数或者返回值类型非常大时,效率就更低。

8.1 函数参数  用  引用和值  的效率比较

#include <time.h>
#include <iostream>
using namespace std;
struct A
{int a[10000];
};
void TestFunc1(A a)
{}
void TestFunc2(A& a)
{}
void TestRefAndValue()
{A a;// 以值作为函数参数size_t begin1 = clock();for (size_t i = 0; i < 10000; ++i)TestFunc1(a);size_t end1 = clock();// 以引用作为函数参数size_t begin2 = clock();for (size_t i = 0; i < 10000; ++i)TestFunc2(a);size_t end2 = clock();// 分别计算两个函数运行结束后的时间cout << "TestFunc1(A)-time:" << end1 - begin1 << endl;cout << "TestFunc2(A&)-time:" << end2 - begin2 << endl;
}
int main()
{TestRefAndValue();return 0;
}

我们可以看到当数据过大的时候,函数参数用引用的效率很快!

8.1 函数返回值用引用和值的效率比较

#include <iostream>
#include <time.h>
using namespace std;
struct A
{int a[10000];
};A a;// 值返回
A TestFunc1() 
{ return a;
}// 引用返回
A& TestFunc2()
{return a;
}void TestReturnByRefOrValue()
{// 以值作为函数的返回值类型size_t begin1 = clock();for (size_t i = 0; i < 100000; ++i)TestFunc1();size_t end1 = clock();// 以引用作为函数的返回值类型size_t begin2 = clock();for (size_t i = 0; i < 100000; ++i)TestFunc2();size_t end2 = clock();// 计算两个函数运算完成之后的时间cout << "TestFunc1 time:" << end1 - begin1 << endl;cout << "TestFunc2 time:" << end2 - begin2 << endl;
}
int main()
{TestReturnByRefOrValue();return 0;
}

当数据过大的时候,函数返回值用引用的效率更快

通过上述代码的比较,发现传值和指针在作为传参以及返回值类型上效率相差很大。这就是引用的优势,不需要开辟临时空间。

九、引用和指针的区别

1. 引用概念上定义一个变量的别名,指针存储一个变量地址。

2. 引用在定义时必须初始化,指针没有要求

3. 引用在初始化时引用一个实体后,就不能再引用其他实体,而指针可以在任何时候指向任何一个同类型实体

4. 没有NULL引用,但有NULL指针

5. 在sizeof中含义不同:引用结果为引用类型的大小,但指针始终是地址空间所占字节个数(32位平台下占4个字节)

6. 引用自加即引用的实体增加1,指针自加即指针向后偏移一个类型的大小

7. 有多级指针,但是没有多级引用

8. 访问实体方式不同,指针需要显式解引用,引用编译器自己处理

9. 引用比指针使用起来相对更安全

10. 空指针没有任何指向,删除无害,引用是别名,删除引用就删除真实对象

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/134654.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

chrome v3开发插件实现所有网站允许跨域

场景&#xff1a; chrome 插件 升级到v3后&#xff0c;原来修改请求响应都变成异步&#xff0c;即无法同步拦截来修改请求响应。 在v3中也不支持修改请求响应内容。 问题&#xff1a;如何在chrome v3中允许其他网站跨域呢。 方式一&#xff1a;禁用chrome跨域&#xff0c;禁…

修改a-rate评分颜色;a-rate评分十分制

使用ant-design-vue的rate评分组件 1。修改颜色 2。十分制&#xff08;默认是5分&#xff0c;改成10分。且提示也是10分制&#xff09; <a-rate v-model"score" :tooltips"rate10" allow-half hoverChange"changeRate" />data() {score: …

数据结构算法-回溯算法

引言 在原神的世界中&#xff0c;小森决定挑战自我&#xff0c;踏上了寻找风神的迷宫——风之迷宫。这个迷宫就像是一个巨大的电玩城&#xff0c;让小森感到困惑和无助。他站在迷宫的入口&#xff0c;看着眼前乱糟糟的路径&#xff0c;内心充满了不安和焦虑。 “派蒙&#xf…

高效接口重试机制的实现

实现一个高效的接口重试机制对于保证系统的稳定性和可靠性至关重要。在面对网络不稳定、服务端故障或者高负载的情况下&#xff0c;接口重试机制能够确保请求的成功执行&#xff0c;同时也需要保证在重试过程中不会造成额外的负担或不必要的延迟。本文将为您介绍高效接口重试机…

如何提高企业竞争力?CRM管理系统告诉你

随着竞争形势和商业环境的加剧&#xff0c;企业需要迅速适应不断变化的消费需求。不少企业使用CRM客户管理系统来优化业务流程&#xff0c;管理客户信息&#xff0c;实现更多的业绩增长。那么我们来说说&#xff0c;CRM系统如何提高企业竞争力&#xff1f; 强大的数据管理&…

HarmonyOS ArkTS基础知识

概述 上一节&#xff0c;学习了TypeScript的基础语法&#xff0c;而在鸿蒙开发当中&#xff0c;有基于自己的编程语言&#xff0c;便是ArkTS。它是一种声明式UI的编程范式的语言&#xff0c;开发框架如下图所示&#xff1a; 根据框架图&#xff0c;分析&#xff0c;我将它大致…

pycharm pro v2023.2.4(Python开发)

PyCharm是一种Python集成开发环境&#xff08;IDE&#xff09;&#xff0c;PyCharm提供了强大的功能&#xff0c;包括语法突出显示、智能代码完成、代码检查、自动重构和调试等特性&#xff0c;这些都可以帮助Python开发人员更加高效地编写代码。 PyCharm Pro是PyCharm的高级版…

【图】:常用图搜索(图遍历)算法

目录 概念图遍历深度优先搜索 (DFS)DFS 适用场景DFS 优缺点 广度优先搜索 (BFS)BFS 适用场景BFS 优缺点 DFS & BFS 异同点 图搜索Dijkstra算法A*算法Floyd算法Bellman-Ford算法SPFA算法 概念 图遍历和图搜索是解决图论问题时常用的两种基本操作。 图遍历是指从图中的某一个…

nssm部署nginx

nssm install Nginx8098 --安装nginx nssm start Nginx8098 --启用nginx nginx 选择nginx路径&#xff0c;安装

易云维®工厂能耗管理平台系统方案,保证运营质量,推动广东制造企业节能减排

我国《关于完整准确全面贯彻新发展理念推进碳达峰碳中和工作的实施意见》出台&#xff0c;提出了推进碳达峰碳中和工作的总体目标。到2025年&#xff0c;广东具备条件的地区、行业和企业率先实现碳达峰&#xff0c;为全省实现碳达峰、碳中和奠定坚实基础&#xff1b;2030年前实…

玩具乐器展示预约小程序的内容是什么

玩具乐器产品的受众非常广&#xff0c;随着互联网电商深入&#xff0c;很多传统线下经营的商家开始转变为线上经营&#xff0c;入驻第三方平台或自建线上商城卖货等&#xff0c;当然除了直接卖产品外&#xff0c;还有产品展示预约咨询场景&#xff0c;因此很多商家也会选择制作…

redis主从复制玩法全过程笔记(redis7+版本)

目录标题 环境目的实操一主多仆服务器和本地主机配置环境docker 环境配置 薪火相传反客为主 主从复制的流程主从复制的特性主从复制的缺点本篇结语 环境 我的环境介绍window环境VM虚拟机一台并安装centos7&#xff0c;一台阿里云Linux服务器&#xff0c;另一台Linux系统主机并…

Mybatis-Plus使用Wrapper自定义SQL

文章目录 准备工作Mybatis-Plus使用Wrapper自定义SQL注意事项目录结构如下所示domain层Controller层Service层ServiceImplMapper层UserMapper.xml 结果如下所示&#xff1a;单表查询条件构造器单表查询&#xff0c;Mybatis-Plus使用Wrapper自定义SQL联表查询不用&#xff0c;My…

C# OpenCvSharp 去除字母后面的杂线

效果 项目 代码 using OpenCvSharp; using System; using System.Drawing; using System.Windows.Forms;namespace OpenCvSharp_Demo {public partial class frmMain : Form{public frmMain(){InitializeComponent();}string image_path "";private void Form1_Loa…

最近的总结(2023.11.8)

菜鸟本来是不打算写文章的&#xff0c;奈何1500的曝光券让我心痒难耐 菜鸟主要是想把这篇博客&#xff08;平凡人的一生的意义是什么&#xff1f;&#xff09;推出去&#xff0c;看看大家的看法&#xff01; 不过既然写&#xff0c;菜鸟自然要好好写&#xff0c;就来聊聊最近…

如何选择SVM中最佳的【核函数】

参数“kernel"在sklearn中可选以下几种 选项&#xff1a; 接下来我们 就通过一个例子&#xff0c;来探索一下不同数据集上核函数的表现。我们现在有一系列线性或非线性可分的数据&#xff0c;我们希望通过绘制SVC在不同核函数下的决策边界并计算SVC在不同核函数下分类准确…

NeRF神经辐射场渲染过程详解,三维重建渲染过程基本原理_光线采样sample_pdf()和光线渲染render_rays ()代码详解

目录 1 神经辐射场 1.1 基本原理 1.2 基本流程 1.3 数学解释 2 三维场景图像渲染详解 2.1射线采样 2.2 NeRF 模型预测 2.3 体积渲染 3 采样与渲染代码详解 &#xff08;rending.py&#xff09; 3.1 神经体积渲染代码解析 3.2 sample_pdf 函数 3.3 render_rays 函数 …

持续集成交付CICD:Jenkins Pipeline与远程构建触发器

目录 一、实验 1.Jenkins Pipeline本地构建触发器 2.Jenkins Pipeline与远程构建触发器&#xff08;第一种方式&#xff09; 3.Jenkins Pipeline与远程构建触发器&#xff08;第二种方式&#xff09; 4.Jenkins Pipeline与远程构建触发器&#xff08;第三种方式&#xff0…

3.JMeter高级使用-让你与众不同

目录 概述插件下载与安装插件下载配置插件 服务器硬件资源监控(精简版)配置服务端代理JMeter配置监控CPU监控网络 JMeter下载结束 概述 今日目标&#xff1a; 插件下载与安装Basic Graphs 主要点 Average Response Time 平均响应时间Active Threads 活动线程数Successful/Fai…

windows11使用docker部署安装minio

时间 2023-11-08 windows11使用docker部署安装minio 目录 1.docker 下载镜像2.docker安装镜像3.访问控制台4.安装问题解决5.使用教程 1.docker 下载镜像 调整镜像源到国内&#xff0c;否则会很慢 docker pull minio/minio2.docker安装镜像 设置用户名和密码时需要注意&…