乐观锁和悲观锁

前言


最近跟别人沟通聊到,乐观锁和悲观锁问题,是出现频率比较高的面试题。我对这方面还没吃透,故直接把大大的文章搬过来了,谢谢大大!

转载:详解乐观锁和悲观锁_Allen Chou的博客-CSDN博客

一、基本概念


乐观锁和悲观锁是两种思想,用于解决并发场景下的数据竞争问题。

乐观锁:乐观锁在操作数据时非常乐观,认为别人不会同时修改数据。因此乐观锁不会上锁,只是在执行更新的时候判断一下在此期间别人是否修改了数据:如果别人修改了数据则放弃操作,否则执行操作。
悲观锁:悲观锁在操作数据时比较悲观,认为别人会同时修改数据。因此操作数据时直接把数据锁住,直到操作完成后才会释放锁;上锁期间其他人不能修改数据。


二、实现方式(含实例)


在说明实现方式之前,需要明确:乐观锁和悲观锁是两种思想,它们的使用是非常广泛的,不局限于某种编程语言或数据库。

悲观锁的实现方式是加锁,加锁既可以是对代码块加锁(如Java的synchronized关键字),也可以是对数据加锁(如MySQL中的排它锁)。

乐观锁的实现方式主要有两种:CAS机制和版本号机制,下面详细介绍。

1、CAS(Compare And Swap)
CAS操作包括了3个操作数:

需要读写的内存位置(V)
进行比较的预期值(A)
拟写入的新值(B)
CAS操作逻辑如下:如果内存位置V的值等于预期的A值,则将该位置更新为新值B,否则不进行任何操作。许多CAS的操作是自旋的:如果操作不成功,会一直重试,直到操作成功为止。

这里引出一个新的问题,既然CAS包含了Compare和Swap两个操作,它又如何保证原子性呢?答案是:CAS是由CPU支持的原子操作,其原子性是在硬件层面进行保证的。

下面以Java中的自增操作(i++)为例,看一下悲观锁和CAS分别是如何保证线程安全的。我们知道,在Java中自增操作不是原子操作,它实际上包含三个独立的操作:(1)读取i值;(2)加1;(3)将新值写回i

因此,如果并发执行自增操作,可能导致计算结果的不准确。在下面的代码示例中:value1没有进行任何线程安全方面的保护,value2使用了乐观锁(CAS),value3使用了悲观锁(synchronized)。运行程序,使用1000个线程同时对value1、value2和value3进行自增操作,可以发现:value2和value3的值总是等于1000,而value1的值常常小于1000。
 

public class CAS {//value1:线程不安全private static int value1 = 0;//value2:使用乐观锁private static AtomicInteger value2 = new AtomicInteger(0);//value3:使用悲观锁private static int value3 = 0;private static synchronized void increaseValue3(){value3++;}public static void main(String[] args) throws InterruptedException {//开启1000个线程,并执行自增操作for (int i = 0; i < 1000; i++) {new Thread(new Runnable() {@Overridepublic void run() {try {Thread.sleep(100);} catch (InterruptedException e) {e.printStackTrace();}value1++;value2.getAndIncrement();increaseValue3();}}).start();}//打印结果Thread.sleep(1000);System.out.println("线程不安全:" + value1);System.out.println("乐观锁(AtomicInteger):" + value2);System.out.println("悲观锁(synchronized):" + value3);}}

首先来介绍AtomicInteger。AtomicInteger是java.util.concurrent.atomic包提供的原子类,利用CPU提供的CAS操作来保证原子性;除了AtomicInteger外,还有AtomicBoolean、AtomicLong、AtomicReference等众多原子类。

下面看一下AtomicInteger的源码,了解下它的自增操作getAndIncrement()是如何实现的(源码以Java7为例,Java8有所不同,但思想类似)。

public class AtomicInteger extends Number implements java.io.Serializable {
//存储整数值,volatile保证可视性
private volatile int value;
//Unsafe用于实现对底层资源的访问
private static final Unsafe unsafe = Unsafe.getUnsafe();
 

//valueOffset是value在内存中的偏移量
private static final long valueOffset;
//通过Unsafe获得valueOffset
static {try {valueOffset = unsafe.objectFieldOffset(AtomicInteger.class.getDeclaredField("value"));} catch (Exception ex) { throw new Error(ex); }
}public final boolean compareAndSet(int expect, int update) {return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}public final int getAndIncrement() {for (;;) {int current = get();int next = current + 1;if (compareAndSet(current, next))return current;}
}

源码分析说明如下:

(1)getAndIncrement()实现的自增操作是自旋CAS操作:在循环中进行compareAndSet,如果执行成功则退出,否则一直执行。

(2)其中compareAndSet是CAS操作的核心,它是利用Unsafe对象实现的。

(3)Unsafe又是何许人也呢?Unsafe是用来帮助Java访问操作系统底层资源的类(如可以分配内存、释放内存),通过Unsafe,Java具有了底层操作能力,可以提升运行效率;强大的底层资源操作能力也带来了安全隐患(类的名字Unsafe也在提醒我们这一点),因此正常情况下用户无法使用。AtomicInteger在这里使用了Unsafe提供的CAS功能。

(4)valueOffset可以理解为value在内存中的偏移量,对应了CAS三个操作数(V/A/B)中的V;偏移量的获得也是通过Unsafe实现的。

(5)value域的volatile修饰符:Java并发编程要保证线程安全,需要保证原子性、可视性和有序性;CAS操作可以保证原子性,而volatile可以保证可视性和一定程度的有序性;在AtomicInteger中,volatile和CAS一起保证了线程安全性。关于volatile作用原理的说明涉及到Java内存模型(JMM),这里不详细展开。

说完了AtomicInteger,再说synchronized。synchronized通过对代码块加锁来保证线程安全:在同一时刻,只能有一个线程可以执行代码块中的代码。synchronized是一个重量级的操作,不仅是因为加锁需要消耗额外的资源,还因为线程状态的切换会涉及操作系统核心态和用户态的转换;不过随着JVM对锁进行的一系列优化(如自旋锁、轻量级锁、锁粗化等),synchronized的性能表现已经越来越好。

2、版本号机制
除了CAS,版本号机制也可以用来实现乐观锁。版本号机制的基本思路是在数据中增加一个字段version,表示该数据的版本号,每当数据被修改,版本号加1。当某个线程查询数据时,将该数据的版本号一起查出来;当该线程更新数据时,判断当前版本号与之前读取的版本号是否一致,如果一致才进行操作。

需要注意的是,这里使用了版本号作为判断数据变化的标记,实际上可以根据实际情况选用其他能够标记数据版本的字段,如时间戳等。

下面以“更新玩家金币数”为例(数据库为MySQL,其他数据库同理),看看悲观锁和版本号机制是如何应对并发问题的。

考虑这样一种场景:游戏系统需要更新玩家的金币数,更新后的金币数依赖于当前状态(如金币数、等级等),因此更新前需要先查询玩家当前状态。

下面的实现方式,没有进行任何线程安全方面的保护。如果有其他线程在query和update之间更新了玩家的信息,会导致玩家金币数的不准确。

@Transactional
public void updateCoins(Integer playerId){//根据player_id查询玩家信息Player player = query("select coins, level from player where player_id = {0}", playerId);//根据玩家当前信息及其他信息,计算新的金币数Long newCoins = ……;//更新金币数update("update player set coins = {0} where player_id = {1}", newCoins, playerId);
}

为了避免这个问题,悲观锁通过加锁解决这个问题,代码如下所示。在查询玩家信息时,使用select …… for update进行查询;该查询语句会为该玩家数据加上排它锁,直到事务提交或回滚时才会释放排它锁;在此期间,如果其他线程试图更新该玩家信息或者执行select for update,会被阻塞。

@Transactional
public void updateCoins(Integer playerId){//根据player_id查询玩家信息(加排它锁)Player player = queryForUpdate("select coins, level from player where player_id = {0} for update", playerId);//根据玩家当前信息及其他信息,计算新的金币数Long newCoins = ……;//更新金币数update("update player set coins = {0} where player_id = {1}", newCoins, playerId);
}

版本号机制则是另一种思路,它为玩家信息增加一个字段:version。在初次查询玩家信息时,同时查询出version信息;在执行update操作时,校验version是否发生了变化,如果version变化,则不进行更新。

@Transactional
public void updateCoins(Integer playerId){//根据player_id查询玩家信息,包含version信息Player player = query("select coins, level, version from player where player_id = {0}", playerId);//根据玩家当前信息及其他信息,计算新的金币数Long newCoins = ……;//更新金币数,条件中增加对version的校验update("update player set coins = {0}, version = version + 1 where player_id = {1} and version = {2}", newCoins, playerId, player.version);
}

三、优缺点和适用场景


乐观锁和悲观锁并没有优劣之分,它们有各自适合的场景;下面从两个方面进行说明。

1、功能限制
与悲观锁相比,乐观锁适用的场景受到了更多的限制,无论是CAS还是版本号机制。

例如,CAS只能保证单个变量操作的原子性,当涉及到多个变量时,CAS是无能为力的,而synchronized则可以通过对整个代码块加锁来处理。再比如版本号机制,如果query的时候是针对表1,而update的时候是针对表2,也很难通过简单的版本号来实现乐观锁。

2、竞争激烈程度
如果悲观锁和乐观锁都可以使用,那么选择就要考虑竞争的激烈程度:

当竞争不激烈 (出现并发冲突的概率小)时,乐观锁更有优势,因为悲观锁会锁住代码块或数据,其他线程无法同时访问,影响并发,而且加锁和释放锁都需要消耗额外的资源。
当竞争激烈(出现并发冲突的概率大)时,悲观锁更有优势,因为乐观锁在执行更新时频繁失败,需要不断重试,浪费CPU资源。


四、面试官追问:乐观锁加锁吗?


笔者在面试时,曾遇到面试官如此追问。下面是我对这个问题的理解:

(1)乐观锁本身是不加锁的,只是在更新时判断一下数据是否被其他线程更新了;AtomicInteger便是一个例子。

(2)有时乐观锁可能与加锁操作合作,例如,在前述updateCoins()的例子中,MySQL在执行update时会加排它锁。但这只是乐观锁与加锁操作合作的例子,不能改变“乐观锁本身不加锁”这一事实。

五、CAS有哪些缺点?


面试到这里,面试官可能已经中意你了。不过面试官准备对你发起最后的进攻:你知道CAS这种实现方式有什么缺点吗?

下面是CAS一些不那么完美的地方:

1、ABA问题
假设有两个线程——线程1和线程2,两个线程按照顺序进行以下操作:

(1)线程1读取内存中数据为A;

(2)线程2将该数据修改为B;

(3)线程2将该数据修改为A;

(4)线程1对数据进行CAS操作

在第(4)步中,由于内存中数据仍然为A,因此CAS操作成功,但实际上该数据已经被线程2修改过了。这就是ABA问题。

在AtomicInteger的例子中,ABA似乎没有什么危害。但是在某些场景下,ABA却会带来隐患,例如栈顶问题:一个栈的栈顶经过两次(或多次)变化又恢复了原值,但是栈可能已发生了变化。

对于ABA问题,比较有效的方案是引入版本号,内存中的值每发生一次变化,版本号都+1;在进行CAS操作时,不仅比较内存中的值,也会比较版本号,只有当二者都没有变化时,CAS才能执行成功。Java中的AtomicStampedReference类便是使用版本号来解决ABA问题的。

2、高竞争下的开销问题

在并发冲突概率大的高竞争环境下,如果CAS一直失败,会一直重试,CPU开销较大。针对这个问题的一个思路是引入退出机制,如重试次数超过一定阈值后失败退出。当然,更重要的是避免在高竞争环境下使用乐观锁。

3、功能限制
CAS的功能是比较受限的,例如CAS只能保证单个变量(或者说单个内存值)操作的原子性,这意味着:(1)原子性不一定能保证线程安全,例如在Java中需要与volatile配合来保证线程安全;(2)当涉及到多个变量(内存值)时,CAS也无能为力。

除此之外,CAS的实现需要硬件层面处理器的支持,在Java中普通用户无法直接使用,只能借助atomic包下的原子类使用,灵活性受到限制。

六、一些名词解释

1、自旋:如果不成功,就一致重试,直到成功为止。

2、原子性:一个操作不可被拆分。通常一个数据库事务就是原子的,所以一个事务不可能成功一部分,失败另外一部分。

3、幂等性:一个操作不管是执行一次还是多次,产生的副作用是一样的。

4、ABA问题:你以为是没变的,其实已经变了。开玩笑的说法:你大爷还是你大爷,你大妈已经不是你大妈了。

A--》B--》A

1)线程1 读取内存数据为A

2)线程2 修改内存数据为B

3) 线程2 修改内存数据为A

4)线程1 读取内存数据发现仍然是A,但此A非原来一开始的A

采取的办法:

加版本号或者时间戳,当每一次修改时,版本号就自动加1或时间戳自动更新;查询值时加上版本号或时间戳,就能看出来是否改变了

5、CAS(Compare and Swap)对比和交换

CAS包含3个参数:

1)需要读写的内存位置V

2)进行比较的预期值A

3) 拟写入的新值B

逻辑:如果内存位置V的值等于预期的A值,那么该位置的值更新为B,否则不进行下一步操作。

CAS是由CPU支持的原子操作,原子性是硬件层面进行保证的。只能保证单个变量的原子性,多个无能为力。

选择CAS的操作是自旋的,如果操作不成功会一直重试,知道成功为止。所以要加上时间限制。

 
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/13448.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【广州华锐互动】无人值守变电站AR虚拟测控平台

无人值守变电站AR虚拟测控平台是一种基于增强现实技术的电力设备巡检系统&#xff0c;它可以利用增强现实技术将虚拟信息叠加在真实场景中&#xff0c;帮助巡检人员更加高效地完成巡检任务。这种系统的出现&#xff0c;不仅提高了巡检效率和准确性&#xff0c;还降低了巡检成本…

企业级敏捷转型探索与实践︱极狐Gitlab战略运营部PMO郝韫

极狐Gitlab战略运营部PMO郝韫先生受邀为由PMO评论主办的2023第十二届中国PMO大会演讲嘉宾&#xff0c;演讲议题&#xff1a;企业级敏捷转型探索与实践。大会将于8月12-13日在北京举办&#xff0c;敬请关注&#xff01; 议题简要&#xff1a; 打造持续创新、快速成长的敏捷组织…

table 导出表格 Excel

在请求中需要设置 responseType: blob export const requestExport (api, method, params {}, config) > {const apiToken localStorage.getItem(token);const data method GET ? params : data;let headers {BackServer-Token: ${apiToken},};if (config?.headers…

python调用百度ai将图片/pdf识别为表格excel

python调用百度ai将图片识别为表格excel 表格文字识别(异步接口)图片转excel 表格文字识别V2图片/pdf转excel通用 表格文字识别(异步接口) 图片转excel 百度ai官方文档&#xff1a;https://ai.baidu.com/ai-doc/OCR/Ik3h7y238 使用的是表格文字识别(异步接口)&#xff0c;同步…

【C#】微软的Roslyn 是个啥?

一、说明 Roslyn 是微软重写的C#编译器并开源。 Roslyn 是 C# 和 Visual Basic.NET 开源编译器的代号。以下是它如何在过去十年企业Microsoft的最黑暗中开始&#xff0c;并成为所有C#&#xff08;和VB&#xff09;的开源&#xff0c;跨平台&#xff0c;公共语言引擎&#xff0c…

springboot+mybatis-plus+vue+element+vant2实现短视频网站,模拟西瓜视频移动端

目录 一、前言 二、管理后台 1.登录 2.登录成功&#xff0c;进入欢迎页 ​编辑 3.视频分类管理 4. 视频标签管理 5.视频管理 6.评论管理 ​编辑 7.用户管理 8.字典管理 &#xff08;类似于后端的枚举&#xff09; 9.参数管理&#xff08;富文本录入&#xff09; 10.管…

Docker容器监控之 CAdvisor+InfluxDB+Granfana

通过docker stats命令可以很方便的看到当前宿主机上所有容器的CPU,内存以及网络流量等数据&#xff0c;一般小公司够用了。但是&#xff0c;docker stats统计结果只能是当前宿主机的全部容器&#xff0c;数据资料是实时的&#xff0c;没有地方存储、没有健康指标过线预警等功能…

VMware搭建Hadoop集群 for Windows(完整详细,实测可用)

目录 一、VMware 虚拟机安装 &#xff08;1&#xff09;虚拟机创建及配置 &#xff08;2&#xff09;创建工作文件夹 二、克隆虚拟机 三、配置虚拟机的网络 &#xff08;1&#xff09;虚拟网络配置 &#xff08;2&#xff09;配置虚拟机 主机名 &#xff08;3&#xf…

R语言中的函数23:zoo::rollmean, rollmax, rollmedian, rollsum等等

文章目录 函数介绍rollmean()rollmax()rollmedianrollsum 函数介绍 rollmean(x, k, fill if (na.pad) NA, na.pad FALSE, align c("center", "left", "right"), ...)rollmax(x, k, fill if (na.pad) NA, na.pad FALSE, align c("cen…

Go 语言环境安装

安装包下载地址 https://www.golang.org/dl/ https://golang.google.cn/dl/liunx安装包&#xff1a; windows:*.msi linux:*linux*.tar.gz mas:*.pkg freeBSD:*.freebsd.*.tar.gz安装 unix/linux/mac os x/freebsd安装 1、下载源码包&#xff1a;go1.4.linux-amd64.tar.gz …

(树) 剑指 Offer 26. 树的子结构 ——【Leetcode每日一题】

❓剑指 Offer 26. 树的子结构 难度&#xff1a;中等 输入两棵二叉树 A 和 B&#xff0c;判断 B 是不是 A 的子结构。(约定空树不是任意一个树的子结构) B 是 A 的子结构&#xff0c; 即 A 中有出现和B相同的结构和节点值。 例如: 给定的树 A: 3/ \4 5/ \1 2给定的树 B&…

stable-diffusion-webui汉化教程

第一种方法 1.打开stable diffusion webui&#xff0c;进入"Extensions"选项卡 2.点击"Install from URL" 3、注意"URL for extension’s git repository"下方的输入框 4、填入地址&#xff1a;https://github.com/VinsonLaro/stable-diffus…

TypeScript中数组,元组 和 枚举类型

数组 方式一 let arr: number[] [1, 2, 3, 4]方式二&#xff0c;使用泛型定义 let arr: Array<number> [1, 2, 3, 4]方式三&#xff0c;使用any let arr: any[] [12, string, true] console.log(arr[1]) // string元组 可以定义不同类型定义类型顺序需保持一直 …

C++多线程编程(包含c++20内容)

C多线程编程(包含c20内容) 文章目录 C多线程编程(包含c20内容)线程通过函数指针创建线程通过函数对象创建线程通过lambda创建线程通过成员函数创建线程线程本地存储取消线程自动join线程从线程获得结果 原子操作库原子操作原子智能指针原子引用使用原子类型等待原子变量 互斥互…

[JAVAee]文件操作-IO

本文章讲述了通过java对文件进行IO操作 IO:input/output,输入/输出. 建议配合文章末尾实例食用 目录 文件 文件的管理 文件的路径 文件的分类 文件系统的操作 File类的构造方法 File的常用方法 文件内容的读写 FileInputStream读取文件 构造方法 常用方法 Scan…

【leetcode】7.28记录

题目考察内容思路踩坑167. 两数之和 II - 输入有序数组 (Easy)双指针双指针分别指向首尾&#xff0c;判断指针两数之和与target的关系633. 平方数之和(Medium)双指针从0到sqrt(target)判断两数可以相同&#xff0c;为了避免溢出可以使用long345. 反转字符串中的元音字母双指针将…

平均列顺序对列排斥能的影响

( A, B )---3*30*2---( 1, 0 )( 0, 1 ) 让网络的输入只有3个节点&#xff0c;AB训练集各由5张二值化的图片组成&#xff0c;让A有6个1&#xff0c;B有4个1&#xff0c;并且让这10个1的位置没有重合。比较迭代次数的顺序。 其中有9组数据 差值结构 A-B 迭代次数 构造平均列 …

使用PyGWalker可视化分析表格型数据

大家好&#xff0c;可以想象一下在Jupyter Notebook中拥有大量数据&#xff0c;想要对其进行分析和可视化。PyGWalker就像一个神奇的工具&#xff0c;能让这项工作变得超级简单。它能获取用户的数据&#xff0c;并将其转化为一种特殊的表格&#xff0c;可以与之交互&#xff0c…

ES6 - promise.all和race方法的用法详解

文章目录 一、前言二、Promise.all()1&#xff0c;第一句&#xff1a;Promise.all()方法接受一个数组作为参数&#xff0c;且每一个都是 Promise 实例2&#xff0c;第二句&#xff1a;如果不是&#xff0c;就会先调Promise.resolve方法&#xff0c;将参数转为 Promise 实例再进…

pytorch的发展历史,与其他框架的联系

我一直是这样以为的&#xff1a;pytorch的底层实现是c(这一点没有问题&#xff0c;见下边的pytorch结构图),然后这个部分顺理成章的被命名为torch,并提供c接口,我们在python中常用的是带有python接口的&#xff0c;所以被称为pytorch。昨天无意中看到Torch是由lua语言写的&…