pytorch的发展历史,与其他框架的联系

        我一直是这样以为的:pytorch的底层实现是c++(这一点没有问题,见下边的pytorch结构图),然后这个部分顺理成章的被命名为torch,并提供c++接口,我们在python中常用的是带有python接口的,所以被称为pytorch。昨天无意中看到Torch是由lua语言写的,这让我十分震惊,完全颠覆了我的想象。所以今天准备查找并记录一下pytorch的发展历史,与其他框架的联系。当然以下列举的部分难以面面俱到,如果您知道哪些有意思的相关知识,请在评论去评论。

pytorch结构图

在这里插入图片描述

  • 图片来源 https://golden.com/wiki/PyTorch-NMGD4Y4,如果你想了解有关PyTorch 中的自动微分,PyTorch 基金会的相关信息,可以点进去看一下。

发展历史

        pytiorch ,如果您想了解pytorch的技术新闻可点击pytorch的官方博客。2016年10月,PyTorch开始作为Adam Paszke的实习项目。

Torch (基础)

        Torch 是一个Facebook的开源机器学习库、一个科学计算框架和一种基于 Lua 编程语言的脚本语言。它于2002年10月首次发布。Torch的开发于2017年转移到PyTorch。

        同时期的学习框架还有MATL AB和OpenNN等。MATL AB是由美国MathWorks公司出品的一种用于算法开发、数据分析以及数值计算的高级技术计算语言和交互式环境。OpenNN开发于2003年在国际工程数值方法中心的名为RAMFLOOD的项目中是一个使用C++编写的开源类库。OpenNN的主要优点是其高性能。该库在执行速度和内存分配方面非常出色。它不断优化和并行化,以最大限度地提高其效率。并且Torch的论文中也提到了Matlab:Torch7: A Matlab-like Environment for Machine Learning,Neural Information Processing Systems. 2011.。

Caffe(声明式编程风格)

        Caffe(https://github.com/BVLC/caffe)是以C++/CUDA代码为主的深度学习框架,需要进行编译安装,支持命令行、Python和MATLAB接口、单机多卡、多机多卡使用。Caffe的全称是:Convolutional architecture forfast feature embedding,它是一个清晰、高效的深度学习框架。
        Caffe是一款知名的深度学习框架,由加州大学伯克利分校的贾扬清博士于2013年在Github上发布。Caffe2018 于 21 年 2022 月底并入 PyTorch。并且在pytorch的开源项目中可以看到名为caffe2的文件夹。

在这里插入图片描述

        Caffe 遵循了神经网络的一个简单假设——所有的计算都是以layer(如relu_layer:https://github.com/BVLC/caffe/blob/2a1c552b66f026c7508d390b526f2495ed3be594/src/caffe/layers/relu_layer.cpp)的形式表示的,layer做的事情就是处理一些数据,然后输出一些计算以后的结果。比如说卷积,就是输入一个图像,然后和这一层的参数(filter)做卷Captain Jack积,然后输出卷积的结果。每一个layer需要做两个计算:1,Forward是从输入计算输出。2,Backward是从上面给的gradient来计算相对于输入的gradient。只要这两个函数实现了以后,我们就可以把很多层连接成一个网络,这个网络做的事情就是输入我们的数据(图像或者语音等),然后来计算我们需要的输出(比如说识别的label),在training的时候,我们可以根据已有的label来计算loss和gradient,然后用gradient来update网络的参数,这个就是Caffe的一个基本流程。

                这是一个官方的caffee的例子:https://github.com/BVLC/caffe/tree/master/examples/mnist ,需要用我们熟悉并使用Google Protobuf定义网络,定义 MNIST 求解器。Caffe通过“blobs”即以4维数组的方式存储和传递数据。Blobs提供了一个统一的内存接口,用于批量图像(或其它数据)的操作,参数或参数更新。Models是以Google Protocol Buffers的方式存储在磁盘上。大型数据存储在LevelDB数据库中。Caffe保留所有的有向无环层图,确保正确的进行前向传播和反向传播。Caffe模型是终端到终端的机器学习系统。一个典型的网络开始于数据层,结束于loss层。通过一个单一的开关,使其网络运行在CPU或GPU上。在CPU或GPU上,层会产生相同的结果。在使用上,caffe(c++)的使用需要进行复杂的编译操作(相比后来的pytorch),所以在caffe流行的时期,有时一个实验室中使用的caffe还是上一届的师兄安装的。但是现在仍有许多论文使用caffee框架,知乎上也有问题:caffe停更这么多年,为何现在还有一些论文开源代码还是使用caffe?

这里引用一下Captain Jack的回答:经典的数据结构先行的程序架构。

  1. 整个caffe都是围绕那个 prototxt 定义来实现的。
  2. 没有太多额外的系统方向的代码,项目结构清晰,比如:分布式、跨平台、通讯、动态dispatch等等。
  3. 和现在的框架比,那就是最小可用产品。
  4. 历史占用率高。

所以,

  1. 改代码容易,你改改 PyTorch、掏粪 试试。
  2. 作为一个数据格式的标准,转换比较容易,到现在 onnx 也就和 caffe 的 prototxt 打平手。很多私有、商业实现还是以 caffe 格式支持为准。
  3. 可能是最重要的:熟悉了懒得学新的,改改caffe又不是不能用。

Theano(创新观点)

        Theano(https://github.com/Theano/Theano)是一个Python库和优化编译器的开源项目, 用于操作和评估数学表达式,尤其是矩阵值表达式。其计算是使用NumPy语法表示,并且编译后可在CPU/GPU架构上高效运行。
        Theano多年来引入很多创新并已被其他框架采用和完善。例如,能够将模型表示为数学表达式,重写计算图以获得更好的性能和内存使用,在GPU上透明执行,高阶自动微分都已成为主流思想。
        Keras是一个由Python编写的开源人工神经网络库,可以作为Tensorflow、Microsoft-CNTK和Theano的高阶应用程序接口。

CG

  • 深度学习软件比较https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software

  • [源码解析] PyTorch 分布式(1)------历史和概述 https://www.cnblogs.com/rossiXYZ/p/15496268.html

  • https://alexmoltzau.medium.com/pytorch-governance-and-history-2e5889b79dc1

  • 宣布成立 PyTorch 基金会:尖端 AI 框架的新时代 2022.12 https://ai.meta.com/blog/pytorch-foundation/

  • LUA Torch 回忆录 https://zhuanlan.zhihu.com/p/380924980?utm_id=0

  • https://en.wikipedia.org/wiki/Torch_(machine_learning)

  • 如何评价 Theano?
    h ttps://www.zhihu.com/question/35485591

  • Chainer是一个开源的深度学习框架, 完全在NumPy和CuPy Python库
    的基础上用Python编写,因其采用边运行边定义方案以及在大型系统上的性

  • Theano实现了非常先进的优化技术来优化完整的计算图。它将代数的各个方面与优化编译器的各个方面相结合。图形的一部分可以编译成 C 语言代码。对于重复计算,评估速度至关重要,Theano通过生成非常有效的代码来达到此目的。 https://www.tutorialspoint.com/theano/theano_computational_graph.htm

  • 深度学习框架——自动求导 https://www.cnblogs.com/wolfling/p/14919024.html

  • 大模型:

  • OneFlow的大模型分片保存和加载策略

  • 一块GPU训练TB级推荐模型不是梦,OneEmbedding性能一骑绝尘

  • 大模型训练难于上青天?效率超群、易用的“李白”模型库来了

  • 深度学习利器之自动微分(1)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/13427.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第二篇-二手工作站配置-AI-LLM

把二手T5810升级了一下用于大模型测试 主机T5810CPUE5-2680V4 14核28线程内存DDR4 16G *4显卡1GT720显卡2Tesla P40 24G硬盘爱国者SSD 2T电源825W 系列文章 第一篇-ChatGLM-webui-Windows安装部署-CPU版 第二篇-二手工作站配置 第三篇-Tesla P40CentOS-7CUDA 11.7 部署实践 …

【如何训练一个中英翻译模型】LSTM机器翻译模型部署(三)

系列文章 【如何训练一个中英翻译模型】LSTM机器翻译seq2seq字符编码(一) 【如何训练一个中英翻译模型】LSTM机器翻译模型训练与保存(二) 【如何训练一个中英翻译模型】LSTM机器翻译模型部署(三) 【如何训…

Windows Server 2012 能使用的playwright版本

由于在harkua_bot里面使用到了playwright,我的服务器又是Windows Server 2012 R2,最新版playwright不支持Windows Server 2012 R2,支持Windows Server 2016以上,所以有了这个需求 https://cdn.npmmirror.com/binaries/playwright…

Hadoop生态体系-HDFS

目录标题 1、Apache Hadoop2、HDFS2.1 设计目标:2.2 特性:2.3 架构2.4 注意点2.5 HDFS基本操作2.5.1 shell命令选项2.5.2 shell常用命令介绍 3、HDFS基本原理3.1 NameNode 概述3.2 Datanode概述 1、Apache Hadoop Hadoop:允许使用简单的编程…

Android Hook 剪切板相关方法

想起之前做过的项目有安全合规要求:主动弹窗获取用户同意了才能调用剪切板相关方法,否则属于违规调用,如果是自己项目的相关调用可以自己加一层if判断 但是一些第三方的jar包里面也有在调用的话,我们就无能为力了,而且…

el-table组件的el-table-column电脑端使用fixed属性固定,移动端不使用固定,怎么实现?

要在电脑端使用 fixed 固定列&#xff0c;而在移动端不使用&#xff0c;可以使用 CSS 媒体查询结合 Vue 的动态绑定来实现。以下是一个示例代码&#xff1a; <template><el-table><el-table-columnprop"name"label"Name":fixed"isDesk…

JPA连接达梦数据库导致auto-ddl失效问题解决

现象&#xff1a; 项目使用了JPA&#xff0c;并且auto-ddl设置的为update&#xff0c;在连接达梦数据库的时候&#xff0c;第一次启动没有问题&#xff0c;但是后面重启就会报错&#xff0c;发现错误为重复建表&#xff0c;也就是说已经建好的表没有检测到&#xff0c;…

title: 用 LangChain 构建基于资料库的问答机器人(四):通过代理使用外部工具

上一篇教程我们介绍了 ReAct 系统&#xff0c;这是一个非常强大的行为模式&#xff0c;但它需要编写大量的示例来告诉 LLM 如何思考、行动&#xff0c;并且为了遵循这个模式&#xff0c;还需要编写代码来分析生成文字、调用函数、拼接 prompt 等&#xff0c;这些工作都是十分繁…

JVM类加载

一、类记载过程 1、通过类的全限定名获取存储该类的class文件 2、解析成运行时数据&#xff0c;即instanceKlass实例&#xff0c;存放到方法区 3、在堆区生成该类的class对象,即instanceMirrorKlass实例 二、将.class文件解析成什么&#xff1f;类的元信息在JVM中如何…

ceph集群中RBD的性能测试、性能调优

文章目录 rados benchrbd bench-write测试工具Fio测试ceph rbd块设备的iops性能测试ceph rbd块设备的带宽测试ceph rbd块设备的延迟 性能调优 rados bench 参考&#xff1a;https://blog.csdn.net/Micha_Lu/article/details/126490260 rados bench为ceph自带的基准测试工具&am…

全加器(多位)的实现

一&#xff0c;半加器 定义 半加器&#xff08;Half Adder&#xff09;是一种用于执行二进制数相加的简单逻辑电路。它可以将两个输入位的和&#xff08;Sum&#xff09;和进位&#xff08;Carry&#xff09;计算出来。 半加器有两个输入&#xff1a;A 和 B&#xff0c;分别代表…

MySQL基础扎实——MySQL中有那些不同的表格

表格类型 在MySQL中&#xff0c;常见的表格类型有以下几种&#xff1a; MyISAM&#xff1a;是MySQL默认的表格类型&#xff0c;具有较高的性能和较小的存储空间占用。但是&#xff0c;MyISAM不支持事务、崩溃恢复和数据行级锁定。 InnoDB&#xff1a;是MySQL提供的一个更强大…

Redis实现分布式锁

文章目录 4、分布式锁4.1 、基本原理和实现方式对比4.2 、Redis分布式锁的实现核心思路4.3 实现分布式锁版本一4.4 Redis分布式锁误删情况说明4.5 解决Redis分布式锁误删问题4.6 分布式锁的原子性问题4.7 Lua脚本解决多条命令原子性问题4.8 利用Java代码调用Lua脚本改造分布式锁…

MySQL | 常用命令示例

MySQL | 常用命令示例 一、启停MySQL数据库服务二、连接MySQL数据库三、创建和管理数据库四、创建和管理数据表五、数据备份和恢复六、查询与优化 MySQL是一款常用的关系型数据库管理系统&#xff0c;广泛应用于各个领域。在使用MySQL时&#xff0c;我们经常需要编写一些常用脚…

python多线程—终止子线程

总体思路 1、获取需要终止的子线程id 2、根据子线程id&#xff0c;终止子线程。 过程 获取子线程id&#xff1a; import threading Thread_id threading.get_ident() # 获取子线程的id值线程终止函数 def async_raise(Thread_id, exctype):"""raises th…

【数据结构】【王道408】——PPT截图与思维导图

自用视频PPT截图 视频网址王道B站链接 23考研 408新增考点&#xff1a; 并查集&#xff0c;红黑树 2023年408真题数据结构篇 408考纲解读 考纲变化 目录 第一章 绪论第二章 线性表顺序表单链表双链表循环链表静态链表差别 第三章 栈 队列 数组栈队列栈的应用数组 第四章 串第五…

软考A计划-系统集成项目管理工程师-项目质量管理-中

点击跳转专栏>Unity3D特效百例点击跳转专栏>案例项目实战源码点击跳转专栏>游戏脚本-辅助自动化点击跳转专栏>Android控件全解手册点击跳转专栏>Scratch编程案例点击跳转>软考全系列 &#x1f449;关于作者 专注于Android/Unity和各种游戏开发技巧&#xff…

【单链表OJ题:删除链表中等于给定值 val 的所有节点】

1.删除链表中等于给定值 val 的所有节点 题目来源 给你一个链表的头节点 head 和一个整数 val &#xff0c;请你删除链表中所有满足 Node.val val 的节点&#xff0c;并返回 新的头节点 。 /*** Definition for singly-linked list.* struct ListNode {* int val;* s…

小程序UV:衡量用户规模与活跃度的重要指标

什么是UV UV是Unique Visitor&#xff08;独立访客&#xff09;的缩写&#xff0c;指的是在特定时间段内访问某个网站、应用或平台的独立用户数量。UV是根据设备、IP地址、Cookie等来识别不同的用户&#xff0c;对于相同的用户多次访问&#xff0c;只计算为一个UV。UV是衡量网…

c#栈应用之实现四则运算

前言&#xff1a;四则运算&#xff0c;大家都不陌生&#xff0c;在上小学的时候&#xff0c;数学中学到过的知识&#xff0c;那么如何在程序中实现呢&#xff1f;下面&#xff0c;我们就用程序来实现9(3-2)*(5-3)/4*3&#xff0c;这个算式的值。计算的时候&#xff0c;有一个规…