Day1 ARM基础

【ARM课程认知】

1.ARM课程的作用

承上启下

  • 基础授课阶段:c语言、数据结构、linux
  • 嵌入式应用层课程:IO、进程线程、网络编程
  • 嵌入式底层课程:ARM体系结构、系统移植、linux设备驱动
  • c++/QT

2.ARM课程需要掌握的内容

  • 自己能够实现简单的汇编编程
  • 能够看懂常见的电路原理图
  • 掌握软件编程控制硬件的思想
  • 了解芯片内部常用外设的工作原理:GPIO、UART、TIMER、IIC、SPI、GIC
  • 掌握数据手册读写的方法

3.ARM的学习方法

  • 上课好好整理明白硬件的工作原理
  • 充分利用硬件环境

【计算机相关理论】

1.计算机的组成

输入设备、输出设备、运算器、控制器、存储器

1.输入设备:将编写好的软件代码以及相关的数据输送到计算机中,转换成计算机能够识别、处理和存储的数据形式 键盘、鼠标、手柄、扫描仪、 2.输出设备:将计算机处理好的数据的结果通过输出设备输出到计算机的外部 显示屏、打印机、音响。。 3.存储器:计算机用于存放数据以及指令的部件。也是计算机实现"程序存储控制"的基础 外部存储器、内存、cache、寄存器 4.控制器(CU):计算机的控制中枢,对机器指令进行译码操作,并且按照译码之后的结果进行相关的控制 5.运算器(ALU):算数逻辑运算单元:根据控制器译码之后的指令和数据,进行算数逻辑运算,并且把运算的结果进行输出

2.程序编译的原理

程序编译的步骤:

  • 预处理:将程序中所有以#开头的内容展开到当前文件中 gcc -E 1.c -o 1.i
  • 编译:检查语法错误,生成汇编程序 gcc -S 1.i -o 1.s
  • 汇编:将汇编程序编译为二进制程序 gcc -c 1.s -o 1.o
  • 链接:将程序中用到的一些库链接到程序中,生成二进制可执行文件 gcc 1.o -o a.out

程序编译的原理:

CPU能够识别的唯一的语言是机器语言。一个CPU能够识别哪一些机器语言是由CPU的硬件(运算器的类型)决定的。

不同的机器指令代表不同的运算。相同运算在不同的机器上的机器指令不一定一样,不同的机器的机器指令不通用,不可移植。汇编指令就是特定机器指令的标志。汇编指令也是不通用的。我们可以采用不同的编译工具编译程序生成可以被不同架构的机器识别的机器指令文件

3.指令和指令集

  • 机器指令(指令的机器码):由二进制的0和1组成的一条机器码。计算机解析这条机器码可以做相应的运算处理
  • 汇编指令:一条汇编指令就是一条机器指令的标志。执行汇编指令也可以让机器进行相关的运算处理
  • 指令集:指令的集合

4.RISC(精简指令集)和CISC(复杂指令集)

RISC(精简指令集)的架构主要应用于嵌入式的设备上 精简指令集是选取了一些比较简单、使用频率比较高的指令组成的指令集 精简指令集的特点: 1.指令的长度和指令的执行周期固定 指令的长度:一条机器码在计算机中占用的空间 指令的周期:CPU执行一条指令花费的时间(时钟周期) 时钟周期:CPU主频率 2.基于精简指令集设计的CPU核心成本、功耗、体积更低,但是实现的功能也相对简单 CISC(复杂指令集) 基于复杂指令集设计的CPU核心更加注重功能的完善性,复杂指令集内核会集合各自各样的指令。 特点: 1.指令的长度和执行周期不固定 2.复杂指令集设计的CPU核心实现的功能更为复杂,但是功耗、成本都会更高

生成X86架构a.out的反汇编,查看a.out文件中每一条指令的大小和地址

5.目前几种主流的RISC内核

ARM内核:主流的嵌入式内核,需要得到ARM的授权 RISC-V:正在快速发展,未来会成为主流 MIPS:完全闭源,中国龙芯科技直接买断,完全垄断,在它的基础上还进行了一些拓展

【ARM相关内容】

1.ARM的发展历史

ARM发展史 (huawei.com)

ARM :Advanced RISC Machines(最初命名为Acorn RISC Machine)简称ARM。对ARM可以有三种理解:1)ARM公司:Advanced RISC Machines Limited;2)ARM处理器架构;3)一种技术——ARM技术。 ARM 公司是全球领先的半导体知识产权 (IP) 提供商,并因此在数字电子产品的开发中处于核心地位 ARM 的商业模式主要涉及 IP 的设计和许可,而非生产和销售实际的半导体芯片。 里程碑1——ARM成立 ARM前身为艾康电脑(Acorn),于1978年,英国剑桥成立,大学的孵化物。 1980年代晚期,苹果开始与艾康合作,开发新版ARM核心。 1985年,艾康开发出全球第一款商用RISC处理器,即ARM1,针对于PC市场,还没有嵌入式呢!!! 1990年,艾康财务危机,受苹果和VLSI(最早做超大规模集成电路的公司)的投资,成立独立子公司:Advanced RISC Machines(ARM),ARM公司正式成立面世 里 程碑2——嵌入式RSIC处理器 1991年,ARM推出第一款嵌入式RISC处理器,即ARM6。 1993年,发布ARM7。 1997年,发布ARM9TDMI,三星2440基于此内核。 1999年,发布ARM9E,增强型ARM9。 2001年,ARMv6架构。 2002年,发布ARM11微架构。 里程碑3——微控制器 2004年,发布ARMv7架构的Cortex系列处理器,同时推出Cortex-M3。 2005年,发布Cortex-A8处理器。 2007年,发布Cortex-M1和Cortex-A9 2009年,实现Cortex-A9、发布Cortex-M0 2010年,推出Cortex-M4(F)、成立Linaro(ARM公司牵头成立的公共组织,专门做ARM处理器在Linux平台上的一些软件的开发和移植),推出Cortex-A15 MPcore高性能处理器(性能比较高了,但是发热量很大)。 里程碑4——64位处理器时代 2011年,推出32位 Cortex-A7 处理器,ARMv8发布 2012年,开始推出64位处理器。推出 Cortex-M0+、ARM 首款64位处理器架构 Cortex-A53、Cortex-A57 架构。全球第一款64位ARM手机iPhone5s。 2013年,推出32位 Cortex-A12 处理器架构 2014年,推出 Cortex-M7(F) 微控制器架构;32位 Cortex-A17处理器架构。 2015年,推出64位 Cortex-A35、Cortex-A72 处理器架构。 2016年,推出 Cortex-M23 、Cortex-M33(F) 微控制器架构;32位 Cortex-A32 处理器架构;64位 Cortex-A73 处理器架构。 2017年,推出64位 Cortex-A55 、Cortex-A75 处理器架构。 2018年,推出微控制器 Cortex-M35P;64位 Cortex-A76 处理器架构。 2016---ARM被软银收购 2020---英伟达收购ARM未果

2.ARM架构

不同版本的指令集就是不同的架构

ARMV1-ARMV6:已经被淘汰 ARMV7架构:32位架构,支持32位指令集 ARMV8架构:64位架构,支持64位指令集,并且向下兼容32位指令 ARMV9架构:64位架构,支持64位指令集

3.ARM内核

基于不同的ARM架构设计出来的不同的处理器核心叫做不同的ARM内核

arm7/arm9/arm11 cortex-A7 ARMV7 cortex-A53 ARMV8 cortex-A55 ARMV8 cortex-A77 ARMV8 cortex-A78 ARMV8 cortex-x1 ARMV8 cortex-A710 ARMV9 cortex-A510 ARMV9

4.SOC(system on chip)

ARM公司只进行技术授权。将自己的IP授权给各个半导体公司。半导体公司根据ARM的授权,在CPU核心外围设计了一些外围电路和设备,集成在一个芯片上,这个芯片就被成为SOC。

SOC由CPU+外设备+总线组成

MCU(微控制器) MPU(微处理器)

公司 SOC名称 内核 架构 ST STM32MP157A cortex-A7 ARMV7 三星 S5P6818 cortex-A53 ARMV8 海思 麒麟9000 cortex-A77 ARMV8 高通 骁龙888 cortex-x1 ARMV8

5.ARM的产品分步

5.1 Cortex-A系列

Cortex-A系列 的核心是ARM处理器中性能最强的、最完善的处理器。属于高端处理器 在基于Cortex-A处理器为核心的开发板上可以搭载linux/鸿蒙灯标准化操作系统

5.2 Cortex-R系列

Cortex-R系列 处理器追求系统的实时性能。对数阶的实时性要求高的场景下使用Cortex-R系列 处理器 汽车、军工

5.3 Cortex-M系列

属于ARM处理器中比较低端的芯片处理器,工作主频一般在24M-256MHz之间 Cortex-M系列 处理器一般不跑操作系统,主要执行一些裸机程序 Cortex-M系列 处理器可以搭载一些轻量级的实时系统 FreeRtos

5.4 SecurCore系列

用于对安全性能要求比较高的场景

6.ARM数据约定

查询芯片手册时可以看到的一些数据大小的表述

A7采用的是32位架构. ARM 约定 Byte 8 bits. Halfword 16 bits. Word 32 bits. Doubleword 64 bits. 32位指令集:一条指令占据存储空间的大小是32位 32位处理器:处理器一条指令最大能进行32位数据的运算 想要在32位处理器中进行64位数据的运算: 0X 00000001 FFFFFFFE 0x 00000004 00000002 先让低32位进行运算,再让高32位进行运算 大部分ARM core 提供: ARM 指令集(32-bit) Thumb 指令集(16-bit ) Cortex-A处理器 16位和32位Thumb-2指令集 16位和32位ThumbEE指令集

7.ARM的工作模式

ARM处理器在面对不同的情境下需要进入不同的工作模式进行对应模式下的处理

ARM 有7种基本工作模式: User : 非特权模式,大部分任务执行在这种模式 FIQ : 当一个高优先级(fast) 中断产生时将会进入这种模式 IRQ : 当一个低优先级(normal) 中断产生时将会进入这种模式 Supervisor :当复位或软中断指令执行时将会进入这种模式 Abort : 当存取异常时将会进入这种模式 Undef : 当执行未定义指令时会进入这种模式 System : 使用和User模式相同寄存器集的特权模式 Cortex-A特有模式: Monitor : 是为了安全而扩展出的用于执行安全监控代码的模式; 也是一种特权模式 HYP:虚拟化模式,当一个硬件上运行两种OS内核时进入这种模式

8.ARM寄存器组织

8.1 计算机内部存储模块介绍

8.2 寄存器概念

寄存器是集成在CPU内部的存储组织,CPU访问寄存器数据的时候只需要根据寄存器的编号就可以访问到寄存器的数值。访问寄存器的速度块。但是寄存器存在数量限制,保存的数据量也很少

8.3 ARM v7架构下的寄存器组织

ARM 有37个32-Bits长的寄存器: 1 个用作PC( program counter) 1个用作CPSR(current program status register) 5个用作SPSR(saved program status registers) 30 个通用寄存器 Cortex体系结构下有40个32-Bits长的寄存器: Cortex-A多出3个寄存器, Monitor 模式 r13_mon , r14_mon, spsr_mon 当前处理器的模式决定着哪组寄存器可操作. 任何模式都可以存取: 相应的r0-r12子集 相应的 r13 (the stack pointer, sp) and r14 (the link register, lr) 相应的 r15 ( the program counter, pc) 相应的CPSR(current program status register, cpsr) 特权模式 (除system模式) 还可以存取: 相应的 spsr (saved program status register) 每一个寄存器大小都是32位

8.4 ARMV8架构寄存器组织

8.5 ARMV7架构下一些具有特定功能的寄存器

R13寄存器(the stack pointer, sp)

R13寄存器又叫SP(栈指针寄存器),这个寄存器内部保存栈顶的地址 一般在内存中分出一部分内存当作栈来使用,SP寄存器时钟保存栈顶空间的地址 栈一般存放一些临时数据,也可以用于保护现场

r15寄存器(the program counter, pc)

R15寄存器又被称为PC寄存器(程序计数器) 这个寄存器始终保存马上要进行取址的指令的地址,当一条指令执行结束之后PC寄存器的数值会自动向下+4 另外,在特定情况下可以手动修改PC的值进行程序的跳转

R14寄存器(the link register, lr)

R14寄存器又被称为链接寄存器,当程序在实现跳转的时候,LR寄存器中保存当前跳转指令下一条指令的地址。方便 实现程序的返回 程序的跳转实现: PC-》跳转之后指令的地址 程序的返回: PC=LR

CPSR寄存器(current program status register, cpsr)

CPSR:程序状态寄存器 这个寄存器中保存当前程序的运行状态,比如工作模式等信息 SPSR:saved program status register SPSR寄存器可以用于保存程序某一时刻的状态 比如当发生异常之后,处理器的工作模式要切换到对应的异常模式去处理异常,这样CPSR的数值会发生对应的改变 在处理完异常结束后,我们需要将CPSR的值修改为没有发送异常之前的状态,这个时候就可以将SPSR保存的异常发送之前的状态赋值给CPSR

1. N[31] : 指令的运行结果为负数时,N位被自动置1,否则为0. eg : 100 - 200 2. Z[30] : 指令的运行结果为零时,Z位被自动置1,否则为0. 100-100 3. C[29] : 加法:加法运算如果产生进位,C位被自动置1,否则为0. 32位指令:低32位向高32位进位 0XFFFFFFFF+1 减法:减法运算如果产生借位,C位被自动清0,否则位1. 32位指令:低32位向高32位借位 1-0XFFFFFFFE 4. V[28] : 符号位发送变化,V位被自动置1,否则清0. 5. I[7] : IRQ中断屏蔽位 I = 0 : 不屏蔽IRQ中断 I = 1 : 屏蔽IRQ中断 6. F[6] : FIQ中断屏蔽位 F = 0 : 不屏蔽FIQ中断 F = 1 : 屏蔽FIQ中断 7. T[5] : 状态位 T = 0 : 表示ARM状态,执行的是ARM指令集 T = 1 : 表示Thumb状态,执行的是Thumb指令集 ARM指令集 : 一条汇编指令编译生成32位的机器码 thumb指令集:一条汇编指令编译生成16位的机器码 ARM指令集的代码的密度低,而thumb指令记得代码密度高。 ARM指令集的功能性要高于Thumb指令集。 8. M[4:0] : 模式位 10000 User mode; 10001 FIQ mode; 10010 IRQ 10011 SVC mode; 10111 Abort mode; 11011 Undfined mode; 11111 System mode; 10110 Monitor mode; 其他没有使用到的值,保留。

9.ARM的流水线工作

9.1 一条指令的执行过程

取址:CPU将PC寄存器中保持的指令地址通过地址总线传输给存储器,存储器将PC对应的指令通过数据总线传输给CPU。CPU将指令保存在IR(指令暂存寄存器)寄存器中 译码:IR寄存器的指令交给译码器,对指令进行译码 执行:译码器对指令译码之后由运算器对译码之后的指令进行运算

9.2 ARM三级流水线

当一条指令在被取址是,译码模块和执行模块处于空闲状态,这样这两个模块相当于没有得到充分利用。为了充分,利用资源,ARM引入了流水线工作,增加了指令的处理速度

【任务】

1.安装汇编环境:

开发工具-》汇编环境搭建

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/133587.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

登录Tomcat控制台,账号密码输入正确但点击登录没反应不跳转到控制台页面

在tomcat-users.xml里面可以查看登录tomcat控制台的账号密码,如果账号密码输入正确还是登录不进去,则很有可能是tomcat的账号被锁了(可在catalina.xxx.log里面查看)。tomcat账号被锁定后默认情况是不访问控制台后5分钟自动解锁&am…

持续集成交付CICD:安装Jenkins Slave(从节点)

目录 一、实验 1.安装Jenkins Slave(从节点) 二、问题 1.salve节点启动jenkins报错 2.终止命令行后jenkins从节点状态不在线 一、实验 1.安装Jenkins Slave(从节点) (1)查看jenkins版本 Version 2.…

Elasticsearch:搜索架构

Elasticsearch 全文检索的复杂性 为了理解为什么全文搜索是一个很难解决的问题,让我们想一个例子。 假设你正在托管一个博客发布网站,其中包含数亿甚至数十亿的博客文章,每个博客文章包含数百个单词,类似于 CSDN。 执行全文搜索…

11月7日 mybatis缓存

mybatis的缓存 缓存的条件:必须要有存在的数据 一级缓存: SqlSession级别缓存.存储的数据.只能在同一个SalSession有效.默认开启 二级缓存: SqlSessionFactory级别的缓存. SqlSessionFactory只有一个的,单例,全局共享的,不同的 SqlSession共享,默认没有…

基于Java+SpringBoot+Mybaties-plus+Vue+ElementUI 失物招领小程序 设计与实现

一.项目介绍 失物招领小程序 用户登录、忘记密码、退出系统 发布失物 和 发布招领 查看我发布的失物和招领信息 失捡物品模块可以查看和搜索所有用户发布的信息。 二.环境需要 1.运行环境:java jdk1.8 2.ide环境:IDEA、Eclipse、Myeclipse都可以&#…

Linux系统下一些配置建议整理

1. 【推荐】高并发服务器建议调小 TCP 协议的 time_wait 超时时间。 说明:操作系统默认 240 秒后,才会关闭处于 time_wait 状态的连接,在高并发访问下,服 务器端会因为处于 time_wait 的连接数太多,可能无法建立新的…

总结Kibana DevTools如何操作elasticsearch的常用语句

一、操作es的工具 ElasticSearch HeadKibana DevToolsElasticHQ 本文主要是总结Kibana DevTools操作es的语句。 二、搜索文档 1、根据ID查询单个记录 GET /course_idx/_doc/course:202、term 匹配"name"字段的值为"6789999"的文档 类似于sql语句中的等…

电子式电表和智能电表哪个更适合家用?

随着科技的发展,家用电力设备也在不断升级。电子式电表和智能电表作为两种常见的电表类型,究竟哪个更适合家用呢?今天,小编将会从多个角度进行全面分析,帮助大家做出明智的选择。 一、工作原理及准确性比较 1.电子式电…

工业控制系统产业联盟理事长辛耀中一行莅临麒麟信安考察交流

11月4日下午,工业控制系统产业联盟理事长辛耀中率联盟专家莅临麒麟信安考察交流,并先后来到麒麟信安、湖南欧拉生态创新中心展厅参观,麒麟信安董事长杨涛、高级副总裁陈松政、副总裁王攀等热情接待。 在麒麟信安展厅,副总裁王攀对…

JSP 学生成绩查询管理系统eclipse开发sql数据库serlvet框架bs模式java编程MVC结构

一、源码特点 JSP 学生成绩查询管理系统 是一套完善的web设计系统,对理解JSP java编程开发语言有帮助,比较流行的servlet框架系统具有完整的源代码和数据库,eclipse开发系统主要采用B/S模式 开发。 java 学生成绩查询管理系统 代码下载链接…

解决SpringBoot项目端口被占用的问题

问题描述: 在Window环境下,运行SpringBoot 项目时,出现端口被占用的问题: 解决方案: 1. 查看对应端口的进程号 netstat -ano | findstr 80802. 查看对应进程号的信息 tasklist | findstr 477963. 根据进程号 kill 进程…

【Web】在前端中,HTML<meta>标签

<meta>实例 <head><meta name"description" content"免费在线教程"><meta name"keywords" content"HTML,CSS,XML,JAVASCRIPT"><meta name"author" content"runoob"><meta char…

2.3 - 网络协议 - ICMP协议工作原理,报文格式,抓包实战

「作者主页」&#xff1a;士别三日wyx 「作者简介」&#xff1a;CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」&#xff1a;对网络安全感兴趣的小伙伴可以关注专栏《网络安全入门到精通》 ICMP协议 1、ICMP协议工作原理2、ICMP协议报文格式…

[C/C++]数据结构 链表OJ题: 反转链表

描述: 给你单链表的头节点 head &#xff0c;请你反转链表&#xff0c;并返回反转后的链表 示例: 方法一: 让链表指向反向 如图所示: 代码思路: struct ListNode* reverseList(struct ListNode* head) {struct ListNode* n1NULL;struct ListNode* n2head;struct ListNode*…

Moco框架初探

一、简介 Moco是一个搭建模拟服务器的工具&#xff0c;其支持API和独立运行两种方式&#xff0c;前者通常在junit等测试框架中使用&#xff0c;后者则是通过运行一个jar包开启服务。 二、用途 主要用于实现mock技术 1、后端接口开发未完成情况下&#xff0c;通过moco模拟接…

猫头虎分享从Python到JavaScript传参数:多面手的数据传递术

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

网络数据包传感器简化流量监控

数据包捕获基于数据包镜像的概念&#xff0c;可用于深度数据包检查、测量应用程序的响应时间以及监视服务器、网络和用户行为&#xff0c;该技术还可用于对需要特定信息的某些区域进行广泛分析&#xff0c;尽管它有效&#xff0c;但并非在所有情况下都是必要的。要分析和管理流…

企业数字化转型与供应链效率-基准回归复刻(2007-2022年)

参照张树山&#xff08;2023&#xff09;的做法&#xff0c;本团队对来自统计与决策《企业数字化转型与供应链效率》一文中的基准回归部分进行复刻。文章实证检验企业数字化转型对供应链效率的影响。用年报词频衡量上市公司数字化转型程度&#xff0c;以库存周转天数来衡量供应…

mysql 全文检索 demo

mysql5.6.7之后开始支持中文全文检索一直没用过&#xff0c;这次试试。 创建表 CREATE TABLE articles (id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,title VARCHAR (200),body TEXT,FULLTEXT (title, body) WITH PARSER ngram ) ENGINE INNODB DEFAULT CHARSETut…

Docker学习——④

文章目录 1、Docker Image&#xff08;镜像&#xff09;2、镜像命令详解2.1 docker rmi2.2 docker save2.3 docker load2.4 docker image inspect2.5 docker history2.6 docker image prune 3、镜像综合实战3.1 离线镜像迁移3.2 镜像存储的压缩与共享 1、Docker Image&#xff…