文章目录
- string类的模拟实现
- string基本框架的实现
- operator+=的实现
- string常用函数的实现
string类的模拟实现
前文对于string的常用函数做了讲解,由于string是一个面试官常考的点,总喜欢让模拟实现string类,下面来模拟实现一下string,赋予基本的功能,且逐步完善函数实现方式。
string基本框架的实现
string类的基本框架,比如构造函数,拷贝构造,析构函数,成员变量,起码的push_back等一些能正常使得string运行的函数的实现。
namespace String {class string {public://迭代器: string中的迭代器实际上就是指针typedef char* iterator;typedef const char* const_iterator;iterator begin(){//begin 表示的是string的首元素地址return _str;}iterator end(){//end 返回string最后一个元素的下一个位置,也就是'\0'return _str + _size;}const_iterator begin() const{//begin 表示的是string的首元素地址return _str;}const_iterator end() const{//end 返回string最后一个元素的下一个位置,也就是'\0'return _str + _size;}//默认构造和带参构造合并,使用缺省参数string(const char* str = "") //""字符串自带'\0':_str(new char[strlen(str) + 1]), _size(strlen(str)), _capacity(strlen(str)){//存储字符串strcpy(_str, str);}//拷贝构造//string(const string& s)//{// //深拷贝,就是创建一个大小一样的空间// _str = new char[s._capacity + 1];// strcpy(_str, s._str);// _size = s._size;// _capacity = s._capacity;//}string(const string& s){_str = new char[s._capacity + 1];memcpy(_str, s._str, s._size + 1);_size = s._size;_capacity = s._capacity;}//析构函数~string(){delete[] _str;_str = nullptr;_size = _capacity = 0;}void Print() {cout << _str << "\t" << _size << "\t" << _capacity << endl;}//reserve 保留容量 可以扩容void reserve(size_t n) //只是改变capacity 不改变size{if (n > _capacity){//新建一个字符数组cout << "reserve->" << n << endl;char* new_str = new char[n + 1];//更改容量//strcpy(new_str, _str);memcpy(new_str, _str, _size + 1);delete[] _str;_str = new_str;_capacity = n;}}//push_back void push_back(char ch){if (_size == _capacity){reserve(_capacity == 0 ? 4 : _capacity * 2);}//加入字符_str[_size] = ch;++_size;_str[_size] = '\0';}void append(const char* str){if (_size + strlen(str) > _capacity){reserve(_size + strlen(str));//至少保留_size + strlen(str)}//加入字符串memcpy(_str + _size, str, strlen(str) + 1);//在'\0'位置(就是_str末尾)+str_size += strlen(str);}//实现+= 也是使用push_back 和append函数string& operator+=(char ch){push_back(ch);return *this;}string& operator+=(const char* str){append(str);return *this;}//返回sizesize_t size() const //const表示修饰this指针,也就是说只读,如果是const对象,也可以访问,普通用户相当于权限的缩小也可也访问{return _size;}size_t capacity(){return _capacity;}private:char* _str;int _size;int _capacity;};
}
构造函数和拷贝构造
默认构造函数和带参构造函数合并,使用缺省参数
拷贝构造函数,我们要使用深拷贝,因为如果是浅拷贝,仅仅是将数值传给新的string对象,但是两者对应一个地址一个空间,当析构一个string对象后,另一个对象再次析构就会报错。
string(const char* str = "") //""字符串自带'\0':_str(new char[strlen(str) + 1]) //因为我们底层用的数组,所以一定要多开一位空间存放'\0', _size(strlen(str)), _capacity(strlen(str))
{//存储字符串strcpy(_str, str); //传入字符串的时候,一般都是结尾为'\0',中间有'\0'的都是我们为string对象增加的。所以这个地方还是使用strcpy即可
}//拷贝构造
string(const string& s)
{//深拷贝,就是创建一个大小一样的空间_str = new char[s._capacity + 1];strcpy(_str, s._str);_size = s._size;_capacity = s._capacity;
}
push_back和append的实现
想要实现push_back和append函数,都要在底层中考虑是否需要扩容,那么我们就顺势要写出reserve函数,让其来判断是否需要扩容。
//reserve 保留容量 可以扩容
void reserve(size_t n) //只是改变capacity 不改变size
{if (n > _capacity){//新建一个字符数组cout << "reserve->" << n << endl;char* new_str = new char[n + 1];//更改容量//strcpy(new_str, _str);memcpy(new_str, _str, _size + 1);delete[] _str;_str = new_str;_capacity = n;}
}
void push_back(char ch)
{if (_size == _capacity){reserve(_capacity == 0 ? 4 : _capacity * 2);}//加入字符_str[_size] = ch;++_size;_str[_size] = '\0';
}
void append(const char* str)
{if (_size + strlen(str) > _capacity){reserve(_size + strlen(str));//至少保留_size + strlen(str)}//加入字符串memcpy(_str + _size, str, strlen(str) + 1);//在'\0'位置(就是_str末尾)+str_size += strlen(str);
}
注意:为什么拷贝字符串内容的时候用memcpy而不是strcpy,这是因为,string中可能中间会有'\0',memcpy是根据第三个参数来定要拷贝的字符长度,而strcmpy,是根据要拷贝的字符串的'\0'出现的位置,所以使用memcpy更加合适。
strcpy和memcpy的对比
- char * strcpy ( char * destination, const char * source );
- void * memcpy ( void * destination, const void * source, size_t num );
operator+=的实现
我们实现了push_back和append之后就可以直接复用这两个函数,实现operator+=
string& operator+=(char ch)
{push_back(ch); //插入一个字符的时候return *this;
}
string& operator+=(const char* str)
{append(str); //插入字符串的时候return *this;
}//因为string对象在该函数之后不会释放空间,所以传引用返回,提高效率
string常用函数的实现
下面主要是对于insert、find、erase、substr、resize、一系列重载运算符等的实现
insert的实现
我们主要实现两种insert函数 1.在pos位置上插入n个字符c 2.在pos位置上插入字符串str
string& insert(size_t pos, size_t n, char c)
{//1.先判定pos是否正确assert(pos <= _size);//2.扩容reserve(_size + n);//3.在pos位置上开始挪动n个字符size_t end = _size;//因为如果pos为0的时候,无符号整型0减去1,end >= pos比较 为一个巨大值,使得该循环无法停止//npos是static变量,定义为-1;while (end >= pos && end != npos){_str[end + n] = _str[end];--end;}//4.添加n个字符for (int i = 0; i < n; i++){_str[pos + i] = c;}_size += n;return *this;
}
string& insert(size_t pos, const char*str)
{//1.pos的判定assert(pos <= _size);//2.扩容int len = strlen(str);reserve(_size + len);//3.在pos位置上移动len个字符size_t end = _size;while (end >= pos && end != npos){_str[end + len] = _str[end];--end;}//4.将str字符串的字符依次输入for (int i = 0; i < len; i++){_str[pos + i] = str[i];}//5.最后_size增加_size += len;return *this;
}
注意:npos的使用,是为了防止size_t无符号整型在于整型pos比较时候的强制转换,整型提升,得到一个巨大值,造成无限循环。
erase的实现
主要就是判断len是否等于npos,或者pos+len>=_size,分两种情况,是否从pos删除完,实际上就是在pos位置上加上'\0'即可,反之就是间隔len个距离向前移动字符,直到pos+len<=_size,最后_size-=len
string& erase(size_t pos = 0, size_t len = npos)
{assert(pos <= _size);if (len == npos || pos + len >= _size){//表示从pos位置删完_str[pos] = '\0';_size = pos;}else {//从pos位置删除len个字符//向前挪动size_t end = pos;while (end+len <= _size) {_str[end] = _str[end + len];end++;}//此时end==_size//_str[end] = '\0';_size -= len;}return *this;
}
find的实现
find的实现,就是遍历找到符合条件的下标,并返回
size_t find(char ch, size_t pos = 0) const
{assert(pos < _size);for (size_t i = pos; i < _size; i++){if (_str[i] == ch){return i;}}return npos; //没有找到返回-1;
}
size_t find(const char* s, size_t pos = 0) const
{//使用strstrassert(pos < _size);const char* str = strstr(_str+pos, s); //使用str函数,进行比较是否有对应的字符串if (str){return str-_str;//两个指针相减,得到的是地址的偏移量}else {return npos;}
}
substr的实现
substr的实现,就是判断要解决的n的数值,然后新建一个string字符串,将从pos位置开始的n个字符依次添加到这个新字符串中,最后返回新字符串
//substr的实现
string substr(size_t pos = 0, size_t len = npos)
{assert(pos < _size);size_t n = len;//如果缺省len=npos 或者是截取的范围大于_sizeif (len == npos || pos + len >= _size){n = _size - pos; }//创建一个新的字符数组string new_str;new_str.reserve(n);for (size_t i = pos; i < n + pos; i++){new_str += _str[i];}return new_str;
}
resize的实现
resize底层是有reserve的,即需要判断是否需要扩容,满足_size<=_capacity
//实现resize
void resize(size_t n, char ch = '\0')
{//两种情况,1.n<_size 直接赋值'\0' 2.判断是否扩容 if (n < _size){_size = n;_str[_size] = '\0';}else{reserve(n);//让reserve来判断是否是需要扩容for (size_t i = _size; i < n; i++){_str[i] = ch;}_size = n;_str[_size] = '\0';}
}
opeartor重载运算符
重载运算符,只要实现一两个就能实现其他,下面我们实现的是operator< 和operator== 然后通过调用这两个函数,来实现其他operator
//字符串比较按照ascii比较//bool operator<(const string& s)//{// int num=memcmp(_str, s._str, _size > s._size?s._size : _size);// //如果在最小长度下,前面数值小于后者 num返回的是负数// // return num == 0 ? _size < s._size : num < 0;// //如果如果num为0,说明等于,且前者长度小于后者,返回真值,反之返回//}
bool operator<(const string& s)
{size_t i1 = 0;size_t i2 = 0;int num = _size > s._size ? s._size : _size; //得到两者最小的长度while (i1 < num && i2 < num){if (_str[i1] < s._str[i2]) //只要不相等就返回{return true;}else if(_str[i1] > s._str[i2]) {return false;}else{++i1; //该字符相当,那么继续++++i2;}}return _size < s._size; //现在退出循环,说明前num个字符都相等,如果此时_size<s._size 那么返回真,反之返回假
}
bool operator==(const string& s)
{return _size == s._size && memcmp(_str, s._str, _size > s._size ? s._size : _size) == 0; //两者字符长度相等,且通过memcpy返回值是否为0来判断函数返回值
}
//我们把 _size == s._size 放在前面,那么后面只需要memcpy(_str,s._str,_size)==0即可
bool operator<=(const string& s)
{return *this < s || *this == s;
}
bool operator>(const string& s)
{return !(*this <= s);
}
bool operator>=(const string& s)
{return !(*this < s);
}
//访问指定下标的字符
//operator[]的实现
//
char& operator[](size_t pos)
{//可读写 pos表示下标assert(pos < _size);return _str[pos]; //返回的是单个字符所以用char 且_str变量离开该函数依旧存在,可以使用&返回
}
string& operator=(const string& s)
{if (this != &s){//调用拷贝构造函数 将s的数据给tmpstring tmp(s);std::swap(_str, tmp._str);std::swap(_size, tmp._size);std::swap(_capacity, tmp._capacity);//进行交换,交换之后tmp在函数结束之后就会释放空间,但是其通过拷贝构造函数生成的新的string对象中的数值留给了*this对象}return *this;
}
流插入>>和流提取<<
//流提取
ostream& operator<<(ostream& out, const String::string& s)
{//就是将s字符串中的每一个字符都加载到out中for (auto ch : s){out << ch;}return out;
}
//流插入
istream& operator>>(istream& in, String::string& s)
{//判断一个字符是否结束 按照空格或者\0来判断s.clear();char buff [128];char ch = in.get();//get 字符int i = 0;while (ch == ' '|| ch == '\n'){ch = in.get(); //处理缓冲区前面的空格和换行}while (ch != ' ' && ch != '\n'){buff[i++] = ch;//如果输入的数值在127之外if (i == 127) //先i++ 相当于从1到127{//留出来一个空间给\0 所以只能这样buff[i] = '\0';s += buff;i = 0;//要重置i}ch = in.get();}if (i != 0){//如果i不0的话,那就是说数值长度在127之内 直接扩容buff[i] = '\0';s += buff;}return in;
}
总结:
- 有关于插入以及添加字符、字符串的函数,都需要考虑容量的问题所以底层会有reserve,比如push_back、append、resize、insert、+=等函数
- find的实现就是遍历,以及使用strstr函数,快速方便的得到下标
- erase、insert等函数都会涉及到移动数组元素,erase向前移动,insert向后移动
- 重载运算符的实现,可以方便我们使用string类
最后附上完整模拟实现string类的代码
#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<assert.h>
#include<math.h>
//模拟实现string
namespace String {class string {public://迭代器: string中的迭代器实际上就是指针typedef char* iterator;typedef const char* const_iterator;iterator begin(){//begin 表示的是string的首元素地址return _str;}iterator end(){//end 返回string最后一个元素的下一个位置,也就是'\0'return _str + _size;}const_iterator begin() const{//begin 表示的是string的首元素地址return _str;}const_iterator end() const{//end 返回string最后一个元素的下一个位置,也就是'\0'return _str + _size;}//默认构造函数//string() // :_str(new char[1])// ,size(0)// ,capacity(0)//{// _str[0] = '\0';//}//带参构造函数 字符串//string(const char* str)// :_str(new char[strlen(str)])// ,size(strlen(str))// ,capacity(strlen(str))//{// //存储字符串// strcpy(_str, str);//}//默认构造和带参构造合并,使用缺省参数string(const char* str="") //""字符串自带'\0':_str(new char[strlen(str)+1]), _size(strlen(str)), _capacity(strlen(str)){//存储字符串strcpy(_str, str);}//拷贝构造//string(const string& s)//{// //深拷贝,就是创建一个大小一样的空间// _str = new char[s._capacity + 1];// strcpy(_str, s._str);// _size = s._size;// _capacity = s._capacity;//}string(const string& s){_str = new char[s._capacity + 1];memcpy(_str, s._str,s._size + 1);_size = s._size;_capacity = s._capacity;}//析构函数~string(){delete[] _str;_str = nullptr;_size = _capacity = 0;}void Print() {cout << _str <<"\t" << _size <<"\t"<< _capacity << endl;}//size_t 无符号整型const char* c_str(){return _str;}//返回sizesize_t size() const //const表示修饰this指针,也就是说只读,如果是const对象,也可以访问,普通用户相当于权限的缩小也可也访问{return _size;}//operator[]的实现// char& operator[](size_t pos){//可读写 pos表示下标assert(pos < _size);return _str[pos]; //返回的是单个字符所以用char 且_str变量离开该函数依旧存在,可以使用&返回}//对于const对象const char& operator[](size_t pos) const //修饰const对象,前面const修饰的话,表示不可以被修改,后面const对象就修饰this指针 const String::string* this{//只读assert(pos < _size);return _str[pos];}//reserve 保留容量 可以扩容void reserve(size_t n) //只是改变capacity 不改变size{if (n > _capacity){//新建一个字符数组cout << "reserve->" << n << endl;char* new_str = new char[n + 1];//更改容量//strcpy(new_str, _str);memcpy(new_str, _str, _size + 1);delete[] _str;_str = new_str;_capacity = n;}}//push_back void push_back(char ch){if (_size == _capacity){reserve(_capacity == 0 ? 4 : _capacity * 2);}//加入字符_str[_size] = ch;++_size;_str[_size] = '\0';}void append(const char* str){if (_size + strlen(str) > _capacity){reserve(_size + strlen(str));//至少保留_size + strlen(str)}//加入字符串memcpy(_str + _size, str, strlen(str)+1);//在'\0'位置(就是_str末尾)+str_size += strlen(str);}//实现+= 也是使用push_back 和append函数string& operator+=(char ch){push_back(ch);return *this;}string& operator+=(const char* str){append(str);return *this;}string& insert(size_t pos, size_t n, char c){//1.先判定pos是否正确assert(pos <= _size);//2.扩容reserve(_size + n);//3.在pos位置上开始挪动n个字符size_t end = _size;//因为如果pos为0的时候,无符号整型0减去1,end >= pos比较 为一个巨大值,使得该循环无法停止//npos是static变量,定义为-1;while (end >= pos && end != npos){_str[end + n] = _str[end];--end;}//4.添加n个字符for (int i = 0; i < n; i++){_str[pos + i] = c;}_size += n;return *this;}string& insert(size_t pos, const char*str){//1.pos的判定assert(pos <= _size);//2.扩容int len = strlen(str);reserve(_size + len);//3.在pos位置上移动len个字符size_t end = _size;while (end >= pos && end != npos){_str[end + len] = _str[end];--end;}//4.将str字符串的字符依次输入for (int i = 0; i < len; i++){_str[pos + i] = str[i];}//5.最后_size增加_size += len;return *this;}//从pos位置开始,删除len长度字符string& erase(size_t pos = 0, size_t len = npos){assert(pos <= _size);if (len == npos || pos + len >= _size){//表示从pos位置删完_str[pos] = '\0';_size = pos;}else {//从pos位置删除len个字符//向前挪动size_t end = pos;while (end+len <= _size) {_str[end] = _str[end + len];end++;}//此时end+len==_size//_str[end] = '\0';_size -= len;}return *this;}//findsize_t find(char ch, size_t pos = 0) const{assert(pos < _size);for (size_t i = pos; i < _size; i++){if (_str[i] == ch){return i;}}return npos; //没有找到返回-1;}size_t find(const char* s, size_t pos = 0) const{//使用strstrassert(pos < _size);const char* str = strstr(_str+pos, s);if (str){return str-_str;//两个指针相减,得到的是地址的偏移量}else {return npos;}}//substr的实现string substr(size_t pos = 0, size_t len = npos){assert(pos < _size);size_t n = len;//如果缺省len=npos 或者是截取的范围大于_sizeif (len == npos || pos + len >= _size){n = _size - pos; }//创建一个新的字符数组string new_str;new_str.reserve(n);for (size_t i = pos; i < n + pos; i++){new_str += _str[i];}return new_str;}void clear(){_str[0] = '\0';_size = 0;}//实现resizevoid resize(size_t n, char ch = '\0'){//两种情况,1.n<_size 直接赋值'\0' 2.判断是否扩容 if (n < _size){_size = n;_str[_size] = '\0';}else{reserve(n);//让reserve来判断是否是需要扩容for (size_t i = _size; i < n; i++){_str[i] = ch;}_size = n;_str[_size] = '\0';}}//字符串比较按照ascii比较//bool operator<(const string& s)//{// int num=memcmp(_str, s._str, _size > s._size?s._size : _size);// //如果在最小长度下,前面数值小于后者 num返回的是负数// // return num == 0 ? _size < s._size : num < 0;// //如果如果num为0,说明等于,且前者长度小于后者,返回真值,反之返回//}bool operator<(const string& s){size_t i1 = 0;size_t i2 = 0;int num = _size > s._size ? s._size : _size;while (i1 < num && i2 < num){if (_str[i1] < s._str[i2]){return true;}else if(_str[i1] > s._str[i2]) {return false;}else{++i1;++i2;}}return _size < s._size;}bool operator==(const string& s){return _size == s._size && memcmp(_str, s._str, _size) == 0;}bool operator<=(const string& s){return *this < s || *this == s;}bool operator>(const string& s){return !(*this <= s);}bool operator>=(const string& s) {return !(*this < s);}//string& operator=(const string& s)//{// if (this != &s)// {// //如果不是同一个string// //深拷贝// char* new_str = new char[s._capacity + 1];// memcpy(new_str, s._str, s._size);// //删除原来地址// delete[] _str;// //新指向一个new_str// _str = new_str;// //更改容量和size// _capacity = s._capacity;// _size = s._size;// }// return *this;//}string& operator=(const string& s){if (this != &s){//调用拷贝构造函数 将s的数据给tmpstring tmp(s);std::swap(_str, tmp._str);std::swap(_size, tmp._size);std::swap(_capacity, tmp._capacity);//进行交换,交换之后tmp在函数结束之后就会释放空间,但是其通过拷贝构造函数生成的新的string对象中的数值留给了*this对象}return *this;}size_t capacity(){return _capacity;}size_t size(){return _size;}//无穷递归的问题:反复调用堆栈// std::swap(*this,tmp)//定义属性private:char* _str;int _size;int _capacity;public:const static size_t npos;};const size_t string::npos = -1;
}
//流提取
ostream& operator<<(ostream& out, const String::string& s)
{//就是将s字符串中的每一个字符都加载到out中for (auto ch : s){out << ch;}return out;
}
//流插入
istream& operator>>(istream& in, String::string& s)
{//判断一个字符是否结束 按照空格或者\0来判断s.clear();char buff [128];char ch = in.get();//get 字符int i = 0;while (ch == ' '|| ch == '\n'){ch = in.get(); //处理缓冲区前面的空格和换行}while (ch != ' ' && ch != '\n'){buff[i++] = ch;//如果输入的数值在127之外if (i == 127) //先i++ 相当于从1到127{//留出来一个空间给\0 所以只能这样buff[i] = '\0';s += buff;i = 0;//要重置i}ch = in.get();}if (i != 0){//如果i不0的话,那就是说数值长度在127之内 直接扩容buff[i] = '\0';s += buff;}return in;
}