使用pytorch处理自己的数据集

目录

1 返回本地文件中的数据集

2 根据当前已有的数据集创建每一个样本数据对应的标签

3 tensorboard的使用

4 transforms处理数据

tranfroms.Totensor的使用

transforms.Normalize的使用

transforms.Resize的使用

transforms.Compose使用

5 dataset_transforms使用


1 返回本地文件中的数据集

在这个操作中,当前数据集的上一级目录就是当前所有同一数据的label

import os
from torch.utils.data import Dataset
from PIL import Imageclass MyDataset(Dataset):def __init__(self, root_dir, label_dir):""":param root_dir: 根目录文件:param label_dir: 分类标签目录"""self.root_dir = root_dirself.label_dir = label_dirself.path = os.path.join(root_dir, label_dir)self.image_path_list = os.listdir(self.path)def __getitem__(self, idx):""":param idx: idx是自己文件夹下的每一个图片索引:return: 返回每一个图片对象和其对应的标签,对于返回类型可以直接调用image.show显示或者用于后续图像处理"""img_name = self.image_path_list[idx]ever_image_path = os.path.join(self.root_dir, self.label_dir, img_name)image = Image.open(ever_image_path)label = self.label_dirreturn image, labeldef __len__(self):return len(self.image_path_list)root_dir = 'G:\python_files\深度学习代码库\cats_and_dogs_small\\train'
label_dir = 'cats'
my_data = MyDataset(root_dir, label_dir)
first_pic, label = my_data[0]   # 自动调用__getitem__(self, idx)
first_pic.show()
print("当前图片中动物所属label", label)

F:\Anaconda\envs\py38\python.exe G:/python_files/深度学习代码库/dataset/MyDataSet.py
当前图片中动物所属label cats

2 根据当前已有的数据集创建每一个样本数据对应的标签


import os
from torch.utils.data import Dataset
from PIL import Imageclass MyLabelData:def __init__(self, root_dir, target_dir, label_dir, label_name):""":param root_dir: 根目录:param target_dir: 生成标签的目录:param label_dir: 要生成为标签目录名称:param label_name: 生成的标签名称"""self.root_dir = root_dirself.target_dir = target_dirself.label_dir = label_dirself.label_name = label_nameself.image_name_list = os.listdir(os.path.join(root_dir, target_dir))def label(self):for name in self.image_name_list:file_name = name.split(".jpg", 1)[0]label_path = os.path.join(self.root_dir, self.label_dir)if not os.path.exists(label_path):os.makedirs(label_path)with open(os.path.join(label_path, '{}'.format(file_name)), 'w') as f:f.write(self.label_name)f.close()
root_dir = 'G:\python_files\深度学习代码库\cats_and_dogs_small\\train'
target_dir = 'cats'
label_dir = 'cats_label'
label_name = 'cat'
label = MyLabelData(root_dir, target_dir, label_dir, label_name)
label.label()

这样上面的代码中的训练集目录下的每一个样本都会在train的cats_label目录下创建其对应的分类标签

每一个标签中文件中都有一个cat字符串或者其他动物的分类名称,以确定它到底是哪一个动物

3 tensorboard的使用

# tensorboard --logdir=深度学习代码库/logs --port=2001
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter('logs')
for i in range(100):writer.add_scalar('当前的函数表达式y=3*x',i*3,i)
writer.close()
#-----------------------------------------------------------
import numpy as np
from PIL import Image
image_PIL = Image.open('G:\python_files\深度学习代码库\cats_and_dogs_small\\train\cats\cat.1.jpg')
image_numpy = np.array(image_PIL)
print(type(image_numpy))
print(image_numpy.shape)
writer.add_image('cat图片', image_numpy,2, dataformats='HWC')

这里使用tensorboard的作用是为了更好的展示数据,但是对于函数的使用,比如上面的add_image中的参数,最好的方式是点击源码查看其对应的参数类型,然后根据实际需要将它所需的数据类型丢给add_image就好,而在源码中该函数的参数中所要求的图片类型必须是tensor类型或者是numpy,所以想要使用tensorboard展示数据就首先必须使用numpy或者使用transforms.Totensor将其转化为tensor,然后丢给add_image函数

还有一个需要注意的是,使用add_image函数,图片的tensor类型或者numpy类型必须和dataformats的默认数据类型一样,否则根据图片的数据类型修改后面的额dataformatas就好

4 transforms处理数据

tranfroms.Totensor的使用
import numpy as np
from torchvision import transforms
from PIL import Image
tran = transforms.ToTensor()
PIL_image = Image.open('G:\python_files\深度学习代码库\\cats\cat\cat.11.jpg')
tensor_pic = tran(PIL_image)
print(tensor_pic)
print(tensor_pic.shape)
from torch.utils.tensorboard import SummaryWriter
write = SummaryWriter('logs')
write.add_image('Tensor_picture',tensor_pic)

tensor([[[0.9216, 0.9059, 0.8353,  ..., 0.2392, 0.2275, 0.2078],
         [0.9765, 0.9216, 0.8118,  ..., 0.2431, 0.2392, 0.2235],
         [0.9490, 0.8745, 0.7608,  ..., 0.2471, 0.2471, 0.2314],
         ...,
         [0.3490, 0.4902, 0.6667,  ..., 0.7804, 0.7804, 0.7804],
         [0.3412, 0.4431, 0.5216,  ..., 0.7765, 0.7922, 0.7882],
         [0.3490, 0.4510, 0.5294,  ..., 0.7765, 0.7922, 0.7882]],

        [[0.9451, 0.9294, 0.8706,  ..., 0.2980, 0.2863, 0.2667],
         [1.0000, 0.9451, 0.8471,  ..., 0.3020, 0.2980, 0.2824],
         [0.9725, 0.8980, 0.7961,  ..., 0.2980, 0.2980, 0.2824],
         ...,
         [0.3725, 0.5137, 0.6902,  ..., 0.8431, 0.8431, 0.8431],
         [0.3647, 0.4667, 0.5451,  ..., 0.8392, 0.8549, 0.8510],
         [0.3608, 0.4627, 0.5412,  ..., 0.8392, 0.8549, 0.8510]],

        [[0.9294, 0.9137, 0.8588,  ..., 0.2235, 0.2118, 0.1922],
         [0.9922, 0.9373, 0.8353,  ..., 0.2275, 0.2235, 0.2078],
         [0.9725, 0.8980, 0.7922,  ..., 0.2275, 0.2275, 0.2118],
         ...,
         [0.4196, 0.5608, 0.7373,  ..., 0.9412, 0.9412, 0.9333],
         [0.4196, 0.5216, 0.6000,  ..., 0.9373, 0.9529, 0.9412],
         [0.4196, 0.5216, 0.6000,  ..., 0.9373, 0.9529, 0.9412]]])
torch.Size([3, 410, 431])

transforms.Normalize的使用
# 对应三个通道,每一个通道一个平均值和方差
# output[channel] = (input[channel] - mean[channel]) / std[channel]
nor = transforms.Normalize([0.5, 0.5, 0.5],[10, 0.5, 0.5])
print(tensor_pic[0][0][0])
x_nor = nor(tensor_pic)
write.add_image('nor_picture:', x_nor)
print(tensor_pic[0][0][0])
write.close()

打开源码查看

def forward(self, tensor: Tensor) -> Tensor:"""Args:tensor (Tensor): Tensor image to be normalized.Returns:Tensor: Normalized Tensor image."""return F.normalize(tensor, self.mean, self.std, self.inplace)

必须传入的是tensor数据类型

transforms.Resize的使用
size_tensor = transforms.Resize((512,512))
# 裁剪tensor
tensor_pic_size = size_tensor(tensor_pic)
# 裁剪Image
size_pic = transforms.Resize((512,512))
image_size = size_pic(PIL_image)
print(image_size)
write.add_image('tensor_pic_size',tensor_pic_size)
print(tensor_pic_size.shape)
np_image = np.array(image_size)
print('np_image.shape:', np_image.shape)
write.add_image('image_size', np_image, dataformats='HWC')

调用Resize的时候,需要传入的数据类型的要求,查看源码如下

def forward(self, img):"""Args:img (PIL Image or Tensor): Image to be scaled.Returns:PIL Image or Tensor: Rescaled image."""return F.resize(img, self.size, self.interpolation)

<PIL.Image.Image image mode=RGB size=512x512 at 0x1A72B1E7D00>
torch.Size([3, 512, 512])
np_image.shape: (512, 512, 3)

transforms.Compose使用
nor = transforms.Normalize([0.5, 0.5, 0.5],[10, 0.5, 0.5])
trans_resize_2 = transforms.Resize((64,64))
trans_to_tensor = transforms.ToTensor()
trans_compose = transforms.Compose([trans_resize_2, trans_to_tensor])
tensor_pic_compose = trans_compose(PIL_image)
write.add_image('tensor_pic_compose',tensor_pic_compose,dataformats='CHW')
class Compose:"""Composes several transforms together. This transform does not support torchscript.Please, see the note below.Args:transforms (list of ``Transform`` objects): list of transforms to compose.Example:>>> transforms.Compose([>>>     transforms.CenterCrop(10),>>>     transforms.ToTensor(),>>> ]).. note::In order to script the transformations, please use ``torch.nn.Sequential`` as below.>>> transforms = torch.nn.Sequential(>>>     transforms.CenterCrop(10),>>>     transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),>>> )>>> scripted_transforms = torch.jit.script(transforms)Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require`lambda` functions or ``PIL.Image``."""def __init__(self, transforms):self.transforms = transformsdef __call__(self, img):for t in self.transforms:img = t(img)return imgdef __repr__(self):format_string = self.__class__.__name__ + '('for t in self.transforms:format_string += '\n'format_string += '    {0}'.format(t)format_string += '\n)'return format_string

5 dataset_transforms使用

from torch.utils.data import DataLoader
from torchvision import  transforms
import torchvision
data_transform = transforms.Compose([transforms.ToTensor()])
train_data = torchvision.datasets.CIFAR10('./data', train=True, download=True)
test_data = torchvision.datasets.CIFAR10('./data', train=False, download=True)
print("train_data", train_data)
# 原始的数据集中每一条数据中包含以一张图片和该图片所属的类别
print("train_data[0]", train_data[0])
print("train_data.classes", train_data.classes)
image, label = train_data[0]
print("label ",label)
image.show()
print("train_data.classes[label]", train_data.classes[label])

train_data Dataset CIFAR10
    Number of datapoints: 50000
    Root location: ./data
    Split: Train
train_data[0] (<PIL.Image.Image image mode=RGB size=32x32 at 0x144ED58D970>, 6)
train_data.classes ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
label  6
train_data.classes[label] frog

#%%
from torchvision import transforms
import torchvision
# 将整个数据集转化为tensor类型
data_transform1 = transforms.Compose([transforms.ToTensor()])
train_data = torchvision.datasets.CIFAR10('./data', train=True, transform=data_transform1, download=True)
test_data1 = torchvision.datasets.CIFAR10('./data', train=False, transform=data_transform1, download=True)
from torch.utils.tensorboard import SummaryWriter
write = SummaryWriter('batch_picture')
for i in range(10):tensor_pic, label = train_data[i]  # 经过前面的transforms成了tensorprint(tensor_pic.shape)write.add_image('batch_picture', tensor_pic, i)
write.close()

Files already downloaded and verified
Files already downloaded and verified
torch.Size([3, 32, 32])
torch.Size([3, 32, 32])
torch.Size([3, 32, 32])
torch.Size([3, 32, 32])
torch.Size([3, 32, 32])
torch.Size([3, 32, 32])
torch.Size([3, 32, 32])
torch.Size([3, 32, 32])
torch.Size([3, 32, 32])
torch.Size([3, 32, 32])

def add_image(self, tag, img_tensor, global_step=None, walltime=None, dataformats='CHW'):"""Add image data to summary.Note that this requires the ``pillow`` package.Args:tag (string): Data identifierimg_tensor (torch.Tensor, numpy.array, or string/blobname): Image dataglobal_step (int): Global step value to recordwalltime (float): Optional override default walltime (time.time())seconds after epoch of eventShape:img_tensor: Default is :math:`(3, H, W)`. You can use ``torchvision.utils.make_grid()`` toconvert a batch of tensor into 3xHxW format or call ``add_images`` and let us do the job.Tensor with :math:`(1, H, W)`, :math:`(H, W)`, :math:`(H, W, 3)` is also suitable as long ascorresponding ``dataformats`` argument is passed, e.g. ``CHW``, ``HWC``, ``HW``.Examples::from torch.utils.tensorboard import SummaryWriterimport numpy as npimg = np.zeros((3, 100, 100))img[0] = np.arange(0, 10000).reshape(100, 100) / 10000img[1] = 1 - np.arange(0, 10000).reshape(100, 100) / 10000img_HWC = np.zeros((100, 100, 3))img_HWC[:, :, 0] = np.arange(0, 10000).reshape(100, 100) / 10000img_HWC[:, :, 1] = 1 - np.arange(0, 10000).reshape(100, 100) / 10000writer = SummaryWriter()writer.add_image('my_image', img, 0)# If you have non-default dimension setting, set the dataformats argument.writer.add_image('my_image_HWC', img_HWC, 0, dataformats='HWC')writer.close()Expected result:.. image:: _static/img/tensorboard/add_image.png:scale: 50 %"""torch._C._log_api_usage_once("tensorboard.logging.add_image")if self._check_caffe2_blob(img_tensor):from caffe2.python import workspaceimg_tensor = workspace.FetchBlob(img_tensor)self._get_file_writer().add_summary(image(tag, img_tensor, dataformats=dataformats), global_step, walltime)
from torchvision import transforms
import torchvision
# 将整个数据集转化为tensor类型
data_transform = transforms.Compose([transforms.ToTensor()])
train_data = torchvision.datasets.CIFAR10('./data', train=True, transform=data_transform, download=True)
test_data = torchvision.datasets.CIFAR10('./data', train=False, transform=data_transform, download=True)
# dataLoad会将原始数据中一个batch中的图片和图片的Label分别放在一起,形成对应
train_data_load = DataLoader(dataset=train_data, shuffle=True, batch_size=64,)
from torch.utils.tensorboard import SummaryWriter
write = SummaryWriter('dataLoad')
# 遍历整个load,一次遍历的图片是64个
for batch_id, data in enumerate(train_data_load):# 经过DataLoda之后,每一个批次返回一批图片和该图片对应的标签类别print('data',data)batch_image, batch_label = dataprint("batch_id",batch_id)print("image.shape", batch_image.shape)print("label.shape", batch_label.shape)write.add_images('batch_load_picture', batch_image, batch_id, dataformats='NCHW')
write.close()
其中一个批次的输出结果展示
batch_id 646
image.shape torch.Size([64, 3, 32, 32])
label.shape torch.Size([64])
data [tensor([[[[0.2510, 0.3804, 0.5176,  ..., 0.5529, 0.5451, 0.2980],[0.2706, 0.6000, 0.6667,  ..., 0.5686, 0.3961, 0.1176],[0.2745, 0.6627, 0.6980,  ..., 0.3961, 0.1608, 0.0824],...,[0.6863, 0.6824, 0.5333,  ..., 0.2941, 0.4863, 0.5059],[0.5804, 0.6784, 0.4902,  ..., 0.1451, 0.2824, 0.3451],[0.4353, 0.4353, 0.5098,  ..., 0.1373, 0.1529, 0.2902]],[[0.3020, 0.4549, 0.6078,  ..., 0.6627, 0.6353, 0.3608],[0.3451, 0.6980, 0.7765,  ..., 0.6745, 0.4706, 0.1647],[0.3490, 0.7529, 0.8039,  ..., 0.4667, 0.2000, 0.1137],...,[0.8196, 0.8157, 0.6157,  ..., 0.3608, 0.5529, 0.5804],[0.7137, 0.8039, 0.5686,  ..., 0.1922, 0.3373, 0.4078],[0.5412, 0.5333, 0.5765,  ..., 0.1765, 0.2000, 0.3490]],[[0.3098, 0.5490, 0.7412,  ..., 0.8314, 0.7373, 0.3765],[0.3765, 0.8392, 0.9569,  ..., 0.7686, 0.4941, 0.1216],[0.3843, 0.9176, 1.0000,  ..., 0.4627, 0.1490, 0.0588],...,[0.9843, 0.9922, 0.7373,  ..., 0.3882, 0.6353, 0.7255],[0.8039, 0.9373, 0.6745,  ..., 0.1804, 0.3647, 0.4941],[0.6471, 0.6549, 0.6980,  ..., 0.1569, 0.2000, 0.3961]]],[[[0.9608, 0.9490, 0.9529,  ..., 0.8314, 0.8196, 0.8235],[0.9255, 0.9216, 0.9333,  ..., 0.8275, 0.8196, 0.8235],[0.9137, 0.9137, 0.9294,  ..., 0.8392, 0.8314, 0.8353],...,[0.4118, 0.4353, 0.4431,  ..., 0.4157, 0.4431, 0.4275],[0.4667, 0.4667, 0.4627,  ..., 0.3961, 0.3804, 0.3882],[0.4392, 0.4235, 0.4235,  ..., 0.5490, 0.4471, 0.4706]],[[0.9647, 0.9529, 0.9529,  ..., 0.8745, 0.8667, 0.8667],[0.9294, 0.9255, 0.9333,  ..., 0.8627, 0.8549, 0.8549],[0.9137, 0.9176, 0.9294,  ..., 0.8627, 0.8588, 0.8549],...,[0.4196, 0.4392, 0.4471,  ..., 0.4314, 0.4627, 0.4510],[0.4745, 0.4745, 0.4706,  ..., 0.4078, 0.4039, 0.4118],[0.4471, 0.4314, 0.4314,  ..., 0.5608, 0.4667, 0.4863]],[[0.9765, 0.9686, 0.9647,  ..., 0.9412, 0.9373, 0.9569],[0.9451, 0.9412, 0.9529,  ..., 0.9216, 0.9216, 0.9373],[0.9451, 0.9451, 0.9569,  ..., 0.9176, 0.9176, 0.9333],...,[0.4078, 0.4314, 0.4353,  ..., 0.4353, 0.4706, 0.4588],[0.4627, 0.4627, 0.4588,  ..., 0.4118, 0.4118, 0.4157],[0.4353, 0.4196, 0.4196,  ..., 0.5569, 0.4627, 0.4863]]],[[[0.9569, 0.9569, 0.9647,  ..., 0.8510, 0.8353, 0.8235],[0.9569, 0.9569, 0.9608,  ..., 0.8627, 0.8431, 0.8392],[0.9804, 0.9725, 0.9725,  ..., 0.8745, 0.8627, 0.8549],...,[0.3725, 0.3882, 0.3922,  ..., 0.3647, 0.3725, 0.3686],[0.3882, 0.4000, 0.4157,  ..., 0.3882, 0.3804, 0.3608],[0.3882, 0.4000, 0.4118,  ..., 0.3725, 0.3608, 0.3490]],[[0.9608, 0.9608, 0.9686,  ..., 0.8706, 0.8549, 0.8392],[0.9608, 0.9608, 0.9686,  ..., 0.8784, 0.8549, 0.8510],[0.9843, 0.9765, 0.9804,  ..., 0.8863, 0.8745, 0.8627],...,[0.3804, 0.3922, 0.3961,  ..., 0.3255, 0.3529, 0.3686],[0.3961, 0.4078, 0.4235,  ..., 0.3647, 0.3686, 0.3647],[0.3961, 0.4078, 0.4196,  ..., 0.3843, 0.3686, 0.3569]],[[0.9843, 0.9765, 0.9804,  ..., 0.9294, 0.9176, 0.9137],[0.9804, 0.9686, 0.9725,  ..., 0.9216, 0.9059, 0.9098],[0.9961, 0.9804, 0.9765,  ..., 0.9137, 0.9098, 0.9098],...,[0.3725, 0.3882, 0.3922,  ..., 0.2902, 0.3255, 0.3686],[0.3922, 0.4039, 0.4196,  ..., 0.3412, 0.3490, 0.3608],[0.3922, 0.4039, 0.4157,  ..., 0.3843, 0.3686, 0.3529]]],...,[[[0.8902, 0.8863, 0.8824,  ..., 0.8314, 0.8392, 0.8353],[0.8902, 0.8863, 0.8863,  ..., 0.8353, 0.8431, 0.8392],[0.8902, 0.8863, 0.8902,  ..., 0.8392, 0.8431, 0.8431],...,[0.9569, 0.9529, 0.9569,  ..., 0.5765, 0.5843, 0.5961],[0.9686, 0.9647, 0.9608,  ..., 0.9412, 0.9255, 0.9255],[0.9804, 0.9765, 0.9725,  ..., 0.9255, 0.9176, 0.9176]],[[0.9176, 0.9137, 0.9098,  ..., 0.8667, 0.8745, 0.8706],[0.9176, 0.9137, 0.9137,  ..., 0.8706, 0.8784, 0.8745],[0.9176, 0.9137, 0.9176,  ..., 0.8784, 0.8824, 0.8784],...,[0.9608, 0.9569, 0.9608,  ..., 0.6392, 0.6667, 0.6706],[0.9765, 0.9725, 0.9647,  ..., 0.9608, 0.9765, 0.9725],[0.9882, 0.9843, 0.9804,  ..., 0.9255, 0.9451, 0.9490]],[[0.9412, 0.9373, 0.9333,  ..., 0.9255, 0.9333, 0.9294],[0.9412, 0.9373, 0.9373,  ..., 0.9294, 0.9373, 0.9333],[0.9412, 0.9373, 0.9412,  ..., 0.9294, 0.9333, 0.9333],...,[0.9686, 0.9647, 0.9686,  ..., 0.6667, 0.6824, 0.6863],[0.9725, 0.9686, 0.9647,  ..., 0.9804, 0.9804, 0.9804],[0.9843, 0.9804, 0.9765,  ..., 0.9373, 0.9451, 0.9490]]],[[[0.1725, 0.1725, 0.1804,  ..., 0.1255, 0.1255, 0.1255],[0.1922, 0.1882, 0.1843,  ..., 0.1333, 0.1373, 0.1333],[0.1961, 0.1922, 0.1882,  ..., 0.1412, 0.1412, 0.1333],...,[0.4471, 0.4902, 0.5137,  ..., 0.5647, 0.5725, 0.5961],[0.4431, 0.4706, 0.4824,  ..., 0.5608, 0.5529, 0.5569],[0.4275, 0.4431, 0.4392,  ..., 0.6078, 0.5608, 0.5176]],[[0.0980, 0.0980, 0.1059,  ..., 0.0353, 0.0353, 0.0392],[0.1137, 0.1137, 0.1098,  ..., 0.0431, 0.0471, 0.0471],[0.1216, 0.1176, 0.1137,  ..., 0.0549, 0.0549, 0.0549],...,[0.2471, 0.2824, 0.3529,  ..., 0.5490, 0.5451, 0.5608],[0.2510, 0.2980, 0.3765,  ..., 0.5569, 0.5294, 0.5255],[0.2471, 0.3059, 0.3765,  ..., 0.6078, 0.5451, 0.4902]],[[0.0431, 0.0431, 0.0510,  ..., 0.0118, 0.0118, 0.0118],[0.0588, 0.0588, 0.0549,  ..., 0.0118, 0.0118, 0.0118],[0.0667, 0.0627, 0.0588,  ..., 0.0118, 0.0118, 0.0118],...,[0.2431, 0.2745, 0.3176,  ..., 0.5373, 0.5608, 0.5804],[0.2510, 0.2824, 0.3294,  ..., 0.5490, 0.5412, 0.5412],[0.2510, 0.2863, 0.3216,  ..., 0.6000, 0.5529, 0.4980]]],[[[0.6353, 0.6314, 0.6314,  ..., 0.6157, 0.6157, 0.6157],[0.6353, 0.6314, 0.6314,  ..., 0.6157, 0.6157, 0.6157],[0.6353, 0.6314, 0.6314,  ..., 0.6157, 0.6157, 0.6157],...,[0.6471, 0.6431, 0.6431,  ..., 0.6392, 0.6392, 0.6392],[0.6471, 0.6431, 0.6431,  ..., 0.6392, 0.6392, 0.6392],[0.6471, 0.6431, 0.6431,  ..., 0.6392, 0.6392, 0.6392]],[[0.7804, 0.7765, 0.7765,  ..., 0.7725, 0.7725, 0.7686],[0.7804, 0.7765, 0.7765,  ..., 0.7725, 0.7725, 0.7686],[0.7804, 0.7765, 0.7765,  ..., 0.7725, 0.7725, 0.7686],...,[0.7922, 0.7882, 0.7882,  ..., 0.7843, 0.7843, 0.7843],[0.7922, 0.7882, 0.7882,  ..., 0.7843, 0.7843, 0.7843],[0.7922, 0.7882, 0.7882,  ..., 0.7843, 0.7843, 0.7843]],[[0.9882, 0.9804, 0.9843,  ..., 0.9765, 0.9765, 0.9765],[0.9882, 0.9804, 0.9843,  ..., 0.9765, 0.9765, 0.9765],[0.9882, 0.9804, 0.9843,  ..., 0.9765, 0.9765, 0.9765],...,[0.9961, 0.9882, 0.9922,  ..., 0.9882, 0.9882, 0.9882],[0.9961, 0.9882, 0.9922,  ..., 0.9882, 0.9882, 0.9882],[0.9961, 0.9882, 0.9922,  ..., 0.9882, 0.9882, 0.9882]]]]), tensor([2, 8, 9, 6, 9, 3, 8, 3, 7, 7, 7, 3, 9, 2, 3, 1, 0, 1, 9, 6, 7, 6, 7, 9,1, 1, 8, 9, 2, 7, 5, 0, 1, 5, 9, 4, 2, 5, 7, 6, 3, 2, 2, 9, 4, 2, 1, 1,9, 5, 2, 5, 0, 8, 1, 7, 3, 5, 8, 0, 5, 0, 5, 0])]

使用add_images对所有批次的数据进行展示

def add_images(self, tag, img_tensor, global_step=None, walltime=None, dataformats='NCHW'):"""Add batched image data to summary.Note that this requires the ``pillow`` package.Args:tag (string): Data identifierimg_tensor (torch.Tensor, numpy.array, or string/blobname): Image dataglobal_step (int): Global step value to recordwalltime (float): Optional override default walltime (time.time())seconds after epoch of eventdataformats (string): Image data format specification of the formNCHW, NHWC, CHW, HWC, HW, WH, etc.Shape:img_tensor: Default is :math:`(N, 3, H, W)`. If ``dataformats`` is specified, other shape will beaccepted. e.g. NCHW or NHWC.Examples::from torch.utils.tensorboard import SummaryWriterimport numpy as npimg_batch = np.zeros((16, 3, 100, 100))for i in range(16):img_batch[i, 0] = np.arange(0, 10000).reshape(100, 100) / 10000 / 16 * iimg_batch[i, 1] = (1 - np.arange(0, 10000).reshape(100, 100) / 10000) / 16 * iwriter = SummaryWriter()writer.add_images('my_image_batch', img_batch, 0)writer.close()Expected result:.. image:: _static/img/tensorboard/add_images.png:scale: 30 %"""torch._C._log_api_usage_once("tensorboard.logging.add_images")if self._check_caffe2_blob(img_tensor):from caffe2.python import workspaceimg_tensor = workspace.FetchBlob(img_tensor)self._get_file_writer().add_summary(image(tag, img_tensor, dataformats=dataformats), global_step, walltime)

在使用add_images时要注意默认的通道数是3,如果经过卷积层以后的图片通道数大于3,那么是无法使用该函数进行显示的,会显示断言错误的信息,所以此时要使用torch.reshape将通道数变为3,然后可以正常调用

对于还未涉及的方法也是这样,查看其对应的参数类型(使用crtl+p,或者直接crtl+鼠标点击相应的函数查看源码),将所需要的参数类型丢给它使用就好

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/129890.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android 基于 J2V8 运行 JavasScript 实践

V8 引擎是由 Google 开源的 JavaScript 引擎&#xff0c;Chrome 就是基于 V8 开发&#xff0c;V8 是跨平台的&#xff0c;J2V8 基于 V8 进行开发&#xff0c;使得 js 代码能够在 Android 平台上脱离 WebView 运行。目前&#xff0c;也有很多关于 Android J2V8 的文章&#xff0…

java int char string互相转换和判断

java int 转 ascii码 数字-> ascii码 System.out.println(7 0);ascii码-> 数字 System.out.println(9 - 0);char ch 5; ch (char)(ch -0); //实际计算时是默认将char类型的ch转换为int类型98; 然后将 97 强转为 a System.out.println(ch); // 5 System.out.println…

@RunWith(SpringRunner.class)注解的作用

通俗点&#xff1a; RunWith(SpringRunner.class)的作用表明Test测试类要使用注入的类&#xff0c;比如Autowired注入的类&#xff0c;有了RunWith(SpringRunner.class)这些类才能实例化到spring容器中&#xff0c;自动注入才能生效 官方点&#xff1a; RunWith 注解是JUnit测…

【数据结构】深入浅出理解快速排序背后的原理 以及 版本优化【万字详解】(C语言实现)

快速排序 快速排序递归实现前言一、Hoare版本&#xff08;一&#xff09;算法运行图例&#xff08;二&#xff09;算法核心思路&#xff08;三&#xff09;算法实现步骤&#xff08;1&#xff09;单趟&#xff08;2&#xff09;多趟 &#xff08;四&#xff09;码源详解 递归实…

npm install报 ERESOLVE unable to resolve dependency tree

三四年前的一个项目&#xff0c;打开&#xff0c;npm install 一下&#xff0c;结果报 ERESOLVE unable to resolve dependency tree。 以前install都一切顺利&#xff0c;现在就不行&#xff0c;那很大的可能是npm的版本不同。 PS D:\workSpace\code\*-admin-ui-master> n…

LeetCode热题100——滑动窗口

滑动窗口 1. 无重复字符的最长序列2. 找对字符中所有字母的异位词 1. 无重复字符的最长序列 给定一个字符串 s &#xff0c;请你找出其中不含有重复字符的 最长子串 的长度。 // 题解&#xff1a;利用set集合查询滑窗内是否存在重复字符 int lengthOfLongestSubstring(string…

单元测试反射注解

单元测试 就是针对最小的功能单元(方法)&#xff0c;编写测试代码对其进行正确性测试。 咱们之前是如何进行单元测试的&#xff1f;有啥问题 &#xff1f; Junit单元测试框架 可以用来对方法进行测试&#xff0c;它是由Junit公司开源出来的 具体步骤 Junit框架的常见注解…

『亚马逊云科技产品测评』活动征文|占了个便宜,12个月的免费云服务器

授权声明&#xff1a;本篇文章授权活动官方亚马逊云科技文章转发、改写权&#xff0c;包括不限于在 Developer Centre, 知乎&#xff0c;自媒体平台&#xff0c;第三方开发者媒体等亚马逊云科技官方渠道 在群里看到有小伙伴说亚马逊可以免费试用服务器&#xff0c;这种好事不得…

Jenkins自动化部署简单配置

下载安装jenkins 安装Jenkins步骤 点击Next的时候会有jdk版本跟Jenkins版本不符合的情况 1. 看下任务管理器内Jenkins服务是否启动&#xff0c;在浏览器里面输入localhost:2023&#xff08;端口号是安装时输入的&#xff09; 2. 根据路径找到放置密码的文件&#xff08;C…

JS冒泡排序(介绍如何执行)

想必大家都多多少少了解过一点排序&#xff0c;让我为大家介绍一下冒泡排序吧&#xff01; 假设我们现在有一个数组[2&#xff0c;4&#xff0c;3&#xff0c;5&#xff0c;1] 我们来分析一下&#xff1a; 1.一共需要的趟数 我们用外层for循环 5个数据我们一共需要走4躺 长度就…

用golang实现一个基于interface的多态示例,展示其使用场景和优劣性。

以下是一个简单的基于interface的多态示例&#xff0c;该示例展示了如何通过使用interface来实现多个不同类型的结构体的共同行为。具体示例如下&#xff1a; package mainimport "fmt"type Animal interface {Speak() string }type Dog struct {Name string }func …

ngixn的指令

Nginx是一个高性能的HTTP和反向代理服务器&#xff0c;它可以处理静态资源、动态内容、负载均衡、反向代理和HTTP缓存等任务。本文将详细介绍在CentOS上安装和配置Nginx服务器&#xff0c;并讲解Nginx常用指令。 安装Nginx 在CentOS上安装Nginx非常简单&#xff0c;只需要执行…

Yolov8改进CoTAttention注意力机制,效果秒杀CBAM、SE

1.CoTAttention 论文地址&#xff1a;2107.12292.pdf (arxiv.org) CoTAttention网络是一种用于多模态场景下的视觉问答&#xff08;Visual Question Answering&#xff0c;VQA&#xff09;任务的神经网络模型。它是在经典的注意力机制&#xff08;Attention Mechanism&#xf…

自动化测试中验证码问题如何解决?

经常会被问到如何解决验证码的问题&#xff0c;在此记录一下我所知道的几种方式。 对于web应用来说&#xff0c;大部分的系统在用户登录时都要求用户输入验证码&#xff0c;验证码的类型的很多&#xff0c;有字母数字的&#xff0c;有汉字的&#xff0c;甚至还要用户输入一条算…

让SOME/IP运转起来——SOME/IP系统设计(上)

什么是SOME/IP&#xff1f; SOME/IP&#xff08;Scalable service-Oriented MiddlewarE over IP&#xff09;是AUTOSAR应用层的协议&#xff0c;是基于IP协议的面向服务的可拓展性的中间件。 SOME/IP中主要定义了&#xff1a; 数据的序列化&#xff1a;SOME/IP支持的数据类型…

Web开发介绍详细介绍

Web开发介绍 1 什么是web开发 Web&#xff1a;全球广域网&#xff0c;也称为万维网(www World Wide Web)&#xff0c;能够通过浏览器访问的网站。 所以Web开发说白了&#xff0c;就是开发网站的&#xff0c;例如下图所示的网站&#xff1a;淘宝&#xff0c;京东等等 那么我们…

SpringBoot集成JPA实现分页和CRUD

SpringBoot集成JPA实现分页和CRUD 文章目录 SpringBoot集成JPA实现分页和CRUDpom.xmlapplication.propertiesaddCategory.jspeditCategory.jsphello.jsplistCategory.jspCategoryCategoryDAOCategoryServiceCategoryServiceImplPage4NavigatorRedisConfigCategoryControllerHel…

Redis的介绍,以及Redis的安装(本机windows版,虚拟机Linux版)和Redis常用命令的介绍

Redis&#xff08;Remote Dictionary Server&#xff09;是一个开源的内存数据存储系统&#xff0c;它提供了持久化、高性能和高可用性的数据存储。它支持多种数据结构&#xff0c;如字符串、哈希表、列表、集合、有序集合等。Redis可以用作数据库、缓存&#xff0c;甚至可以用…

怎么看待工信部牵头推动人形机器人发展

1&#xff0c;工信部牵头&#xff0c;而不是科技部牵头&#xff0c;有些蹊跷&#xff0c;科技部应该比工信部更了解科技发展趋势&#xff0c;工信部比科技部更了解工业发展趋势&#xff0c;这是用工业倒逼科技进步。 2&#xff0c;人的优势不是身体&#xff0c;而是精神&#…

python综合应用

猜数字游戏 # import random # 猜数字游戏 随机一个数字 提示玩家 # a random.randint(1, 100) # flag1 1 # flag2 100 # while True: # b int(input("请猜一个%d-%d的数字&#xff1a;" % (flag1,flag2))) # if b > a: # flag2 b # …