【深度学习】pytorch——Tensor(张量)详解

笔记为自我总结整理的学习笔记,若有错误欢迎指出哟~

pytorch——Tensor

  • 简介
  • 创建Tensor
    • torch.Tensor( )和torch.tensor( )的区别
      • torch.Tensor( )
      • torch.tensor( )
    • tensor可以是一个数(标量)、一维数组(向量)、二维数组(矩阵)和更高维的数组(高阶数据)。
      • 标量(scalar )
      • 向量(vector)
      • 矩阵(matrix)
  • 常用Tensor操作
    • 调整tensor的形状
      • tensor.view
      • tensor.squeeze与tensor.unsqueeze
        • tensor.squeeze(dim)
        • tensor.unsqueeze(dim)
      • None 可以为张量添加一个新的轴(维度)
    • 索引操作
      • 切片索引
      • gather( )
  • 高级索引
  • Tensor数据类型
  • Tensor逐元素
  • Tensor归并操作
  • Tensor比较操作
  • Tensor线性代数
  • Tensor和Numpy
  • Tensor的数据结构

简介

Tensor,又名张量。它可以是一个数(标量)、一维数组(向量)、二维数组(矩阵)和更高维的数组(高阶数据)。Tensor和Numpy的ndarrays类似,但PyTorch的tensor支持GPU加速。
在这里插入图片描述

官方文档
https://pytorch.org/docs/stable/tensors.html

import torch  as t
t.__version__		# '2.1.0+cpu'

创建Tensor

创建方法示例输出
通过给定数据创建张量torch.Tensor([1, 2, 3])tensor([1., 2., 3.])
通过指定tensor的形状torch.Tensor(2, 3)tensor([[1.1395e+23, 1.6844e-42, 0.0000e+00],[0.0000e+00, 0.0000e+00, 0.0000e+00]])
使用torch.arange()创建连续的张量torch.arange(0, 10, 2)tensor([0, 2, 4, 6, 8])
使用torch.zeros()创建全零张量torch.zeros((3, 4))tensor([[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.]])
使用torch.ones()创建全一张量torch.ones((2, 2))tensor([[1., 1.], [1., 1.]])
使用torch.randn()创建随机张量torch.randn((3, 3))tensor([[ 1.0553, -0.4815, 0.6344], [-0.7507, 1.3891, 1.0460], [-0.5625, 1.9531, -0.5468]])
使用torch.rand()创建在0到1之间均匀分布的随机张量torch.rand((3, 3))tensor([[1, 6, 5], [2, 0, 4], [8, 5, 7]])
使用torch.randint()创建在给定范围内的整数随机张量torch.randint(low=0, high=10, size=(3, 3))tensor([[0, 8, 9], [1, 8, 7], [4, 4, 4]])
使用torch.eye()创建单位矩阵torch.eye(5)tensor([[1., 0., 0., 0., 0.], [0., 1., 0., 0., 0.], [0., 0., 1., 0., 0.], [0., 0., 0., 1., 0.], [0., 0., 0., 0., 1.]])
从Python列表或Numpy数组创建张量torch.tensor([1, 2, 3])torch.tensor(np.array([1, 2, 3]))tensor([1, 2, 3])或tensor([1, 2, 3], dtype=torch.int32)
将整个张量填充为常数值torch.full((3, 3), 3.14)tensor([[3.1400, 3.1400, 3.1400], [3.1400, 3.1400, 3.1400], [3.1400, 3.1400, 3.1400]])
创建指定大小的空张量torch.empty((3, 3))tensor([[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]])
创建长度为5的随机排列张量torch.randperm(5)tensor([1, 2, 0, 3, 4])

torch.Tensor( )和torch.tensor( )的区别

torch.Tensor( )

torch.Tensor([1, 2, 3]) 的创建方式会根据输入的数据类型来确定张量的数据类型。
例如,如果输入的是整数列表,那么创建的张量将使用默认的数据类型 torch.float32。这意味着即使输入的数据是整数,张的数据类型也会被转换为浮点数类型。

a = t.Tensor([1, 2, 3])
a
# tensor([1., 2., 3.])

torch.Tensor(1,2) 通过指定tensor的形状创建张量

a= t.Tensor(1,2) # 注意和t.tensor([1, 2])的区别
a.shape
# torch.Size([1, 2])

torch.tensor( )

torch.tensor([1, 2, 3]) 的创建方式会根据输入的数据类型灵活地选择张量的数据类型。它可以接受各种数据类型的输入,包括整数、浮点数、布尔值等,并根据输入的数据类型自动确定创建张量使用的数据类型。

a = t.tensor([1, 2, 3])
a
# tensor([1, 2, 3])

tensor可以是一个数(标量)、一维数组(向量)、二维数组(矩阵)和更高维的数组(高阶数据)。

标量(scalar )

scalar = t.tensor(3.14) 
print('scalar: %s, shape of sclar: %s' %(scalar, scalar.shape))

输出为:

scalar: tensor(3.1400), shape of sclar: torch.Size([])

向量(vector)

vector = t.tensor([1, 2, 3])
print('vector: %s, shape of vector: %s' %(vector, vector.shape))

输出为:

vector: tensor([1, 2, 3]), shape of vector: torch.Size([3])

矩阵(matrix)

matrix = t.tensor([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]])
matrix,matrix.shape

输出为:

(tensor([[0.1000, 1.2000],[2.2000, 3.1000],[4.9000, 5.2000]]), torch.Size([3, 2]))

常用Tensor操作

方法描述
tensor.view(*args)改变张量形状
tensor.reshape(*args)改变张量形状
tensor.size()返回张量形状
tensor.dim()返回张量维度
tensor.unsqueeze(dim)在指定维度上添加一个新的维度
tensor.squeeze(dim)压缩指定维度的大小为1的维度
tensor.transpose(dim0, dim1)交换两个维度
tensor.permute(*dims)重新排列张量的维度
tensor.flatten()展平所有维度
tensor.mean(dim)沿指定维度计算张量的平均值
tensor.sum(dim)沿指定维度计算张量的和
tensor.max(dim)沿指定维度返回张量的最大值
tensor.min(dim)沿指定维度返回张量的最小值
tensor.argmax(dim)沿指定维度返回张量最大元素的索引
tensor.argmin(dim)沿指定维度返回张量最小元素的索引
tensor.add(value)将标量加到张量中的每个元素
tensor.add(tensor)将另一个张量加到该张量
tensor.sub(value)将标量从张量中的每个元素减去
tensor.sub(tensor)从该张量中减去另一个张量
tensor.mul(value)将张量中的每个元素乘以标量
tensor.mul(tensor)将该张量与另一个张量相乘
tensor.div(value)将张量中的每个元素除以标量
tensor.div(tensor)将该张量除以另一个张量

调整tensor的形状

tensor.view

通过tensor.view方法可以调整tensor的形状,但必须保证调整前后元素总数一致。view不会修改自身的数据,返回的新tensor与原tensor共享内存,也即更改其中的一个,另外一个也会跟着改变。

a = t.arange(0, 6)
a.view(2, 3)

输出结果为:

tensor([[0, 1, 2],[3, 4, 5]])
  • 案例1
b = a.view(-1, 2) # 当某一维为-1的时候,会自动计算它的大小
b.shape		# torch.Size([3, 2])
  • 案例2
b = a.view(-1, 3) # 当某一维为-1的时候,会自动计算它的大小
b.shape		# torch.Size([2,3])

tensor.squeeze与tensor.unsqueeze

tensor.squeeze(dim)

tensor.squeeze(dim) 方法用于压缩张量中指定维度大小为1的维度,即将大小为1的维度去除。如果未指定 dim 参数,则会去除所有大小为1的维度。

# 创建一个形状为 (1, 3, 1, 4) 的张量
x = torch.arange(12).reshape(1, 3, 1, 4)
print(x.shape)  # 输出: torch.Size([1, 3, 1, 4])# 使用 squeeze 去除大小为1的维度
y = x.squeeze()
print(y.shape)  # 输出: torch.Size([3, 4])# 指定 dim 参数去除指定维度大小为1的维度
z = x.squeeze(0)
print(z.shape)  # 输出: torch.Size([3, 1, 4])
tensor.unsqueeze(dim)

tensor.unsqueeze(dim) 方法用于在指定维度上添加一个新的维度,新的维度大小为1。

# 创建一个形状为 (3, 4) 的张量
x = t.randn(3, 4)
print(x.shape)  # 输出: torch.Size([3, 4])# 使用 unsqueeze 在维度0上添加新维度
y = x.unsqueeze(0)
print(y.shape)  # 输出: torch.Size([1, 3, 4])# 使用 unsqueeze 在维度2上添加新维度
z = x.unsqueeze(2)
print(z.shape)  # 输出: torch.Size([3, 4, 1])

None 可以为张量添加一个新的轴(维度)

在 PyTorch 中,使用 None 可以为张量添加一个新的轴(维度)。这个新的轴可以在任何位置添加,从而改变张量的形状。以下是一个示例:

# 创建一个形状为 (3, 4) 的二维张量
a = t.tensor([[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12]])# 使用 None 在第一维度上新增一个轴
b = a[None, :, :]print(b.shape)  # 输出: torch.Size([1, 3, 4])

在上面的例子中,使用 None 将张量 a 在第一维度上扩展,结果得到了一个形状为 [1, 3, 4] 的三维张量 b。通过为 a 添加新的轴,我们可以改变张量的维度和形状,从而为其提供更多的灵活性。

索引操作

索引出来的结果与原tensor共享内存,也即修改一个,另一个会跟着修改。

切片索引

# 创建一个形状为 (3, 4) 的二维张量
a = t.tensor([[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12]])# 使用切片操作访问其中的元素
b = a[:, 1:3]
print(b)
# tensor([[ 2,  3],
#         [ 6,  7],
#         [10, 11]])# 可以使用 step 参数控制步长
c = a[::2, ::2]
print(c)
# tensor([[ 1,  3],
#         [ 9, 11]])# 可以使用负数索引从后往前访问元素
d = a[:, -2:]
print(d)
# tensor([[ 3,  4],
#         [ 7,  8],
#         [11, 12]])

gather( )

gather() 是 PyTorch 中的一个张量索引函数,可以用于按照给定的索引从输入张量中检索数据。它的语法如下:

torch.gather(input, dim, index, out=None, sparse_grad=False) -> Tensor

其中,参数含义如下:

  • input:输入张量,形状为 (N*,*C) 或 (N,C,d1,d2,…,dk)。
  • dim:要检索的维度。
  • index:用于检索的索引张量,形状为 (M,) 或(M,d1,d2,…,dk)。
  • out:输出张量,形状与 index 相同。
  • sparse_grad:是否在反向传播时启用稀疏梯度计算。

gather() 函数主要用于按照给定的索引从输入张量中检索数据。具体来说,对于二维输入张量 input 和一维索引张量 indexgather() 函数会返回一个一维张量,其中每个元素是 input 中相应行和 index 中相应列的交点处的数值。对于更高维度的输入,索引张量 index 可以选择任何维度的元素。

示例1

# 创建一个形状为 (3, 4) 的二维张量
input = t.tensor([[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12]])# 创建一个索引张量,用于按列检索元素
index = t.tensor([[0, 2, 3],[1, 3, 2]])# 使用 gather 函数按列检索元素,返回一个二维张量
output = t.gather(input, dim=1, index=index)print(output)
# 输出:
# tensor([[ 1,  3,  4],
#         [ 6,  8,  7]])

在上面的示例中:

  • 创建了一个形状为 (3, 4) 的二维输入张量 input
  • 创建了一个形状为 (2, 3) 的索引张量 index,用于检索元素。
  • 使用 gather() 函数按列检索元素,并将结果存储到输出张量 output 中。

示例2

# 创建一个形状为 (2, 3, 4) 的三维张量
input = t.tensor([[[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12]],[[13, 14, 15, 16],[17, 18, 19, 20],[21, 22, 23, 24]]])# 创建一个形状为 (2, 3) 的索引张量
index = t.tensor([[0, 2, 1],[2, 1, 0]])# 添加一个维度到索引张量
index = index.unsqueeze(2)# 使用 gather 函数按第二个维度检索元素
output_dim_1 = t.gather(input, dim=1, index=index)# 使用 gather 函数按第三个维度检索元素
output_dim_2 = t.gather(input, dim=2, index=index)print(output_dim_1)
print(output_dim_2)
'''
输出:
tensor([[[ 1],[ 9],[ 5]],[[21],[17],[13]]])
tensor([[[ 1],[ 7],[10]],[[15],[18],[21]]])
'''

高级索引

高级索引可以看成是普通索引操作的扩展,但是高级索引操作的结果一般不和原始的Tensor共享内存。

x = t.arange(0,27).view(3,3,3)
print(x)a = x[[1, 2], [1, 2], [2, 0]] # x[1,1,2]和x[2,2,0]
print(a)b = x[[2, 1, 0], [0], [1]] # x[2,0,1],x[1,0,1],x[0,0,1]
print(b)c = x[[0, 2], ...] # x[0] 和 x[2]
print(c)

输出结果为:

tensor([[[ 0,  1,  2],[ 3,  4,  5],[ 6,  7,  8]],[[ 9, 10, 11],[12, 13, 14],[15, 16, 17]],[[18, 19, 20],[21, 22, 23],[24, 25, 26]]]) tensor([14, 24]) tensor([19, 10,  1]) tensor([[[ 0,  1,  2],[ 3,  4,  5],[ 6,  7,  8]],[[18, 19, 20],[21, 22, 23],[24, 25, 26]]])

Tensor数据类型

以下是常见的 Tensor 数据类型及其相应的字符串表示:

数据类型字符串表示
32 位浮点数‘torch.float32’ 或 ‘torch.float’
64 位浮点数‘torch.float64’ 或 ‘torch.double’
16 位浮点数(半精度)‘torch.float16’ 或 ‘torch.half’
8 位整数(无符号)‘torch.uint8’
8 位整数(有符号)‘torch.int8’
16 位整数‘torch.int16’ 或 ‘torch.short’
32 位整数‘torch.int32’ 或 ‘torch.int’
64 位整数‘torch.int64’ 或 ‘torch.long’
布尔型‘torch.bool’

使用 PyTorch 中的 dtype 属性可以获取 Tensor 的数据类型。例如:

x = t.randn(3, 4) # 创建一个随机的 FloatTensorprint(x.dtype) # 输出 torch.float32

Tensor逐元素

以下是 PyTorch 支持的逐元素操作及其相应的函数名:

操作函数名
加法torch.add()torch.add_()
减法torch.sub()torch.sub_()
乘法torch.mul()torch.mul_()
除法torch.div()torch.div_()
幂运算torch.pow()torch.pow_()
取整torch.floor()torch.floor_()
取整(向上)torch.ceil()torch.ceil_()
取整(四舍五入)torch.round()torch.round_()
指数函数torch.exp()torch.exp_()
对数函数torch.log()torch.log_()
平方根函数torch.sqrt()torch.sqrt_()
绝对值torch.abs()torch.abs_()
正弦函数torch.sin()torch.sin_()
余弦函数torch.cos()torch.cos_()
正切函数torch.tan()torch.tan_()
反正弦函数torch.asin()torch.asin_()
反余弦函数torch.acos()torch.acos_()
反正切函数torch.atan()torch.atan_()

下面是三个逐元素操作的示例:

  1. 加法操作:
x = t.tensor([1, 2, 3])
y = t.tensor([4, 5, 6])result = t.add(x, y)print(result)  # 输出 tensor([5, 7, 9])
  1. 平方根函数操作:
x = t.tensor([4.0, 9.0, 16.0])result = t.sqrt(x)print(result)  # 输出 tensor([2., 3., 4.])
  1. 绝对值操作:
x = t.tensor([-1, -2, 3, -4])result = t.abs(x)print(result)  # 输出 tensor([1, 2, 3, 4])

Tensor归并操作

以下是 PyTorch 支持的归并操作及其相应的函数名:

操作函数名
求和torch.sum()
平均值torch.mean()
方差torch.var()
标准差torch.std()
最小值torch.min()
最大值torch.max()
中位数torch.median()
排序torch.sort()

下面是三个归并操作的示例:

  1. 求和操作:
x = t.tensor([[1, 2], [3, 4]])result = t.sum(x)print(result)  # 输出 tensor(10)
  1. 平均值操作:
x = t.tensor([[1, 2], [3, 4]], dtype=t.float)result = t.mean(x)print(result)  # 输出 tensor(2.5000)
  1. 最小值操作:
x = t.tensor([[1, 2], [3, 4]])result = t.min(x)print(result)  # 输出 tensor(1)

Tensor比较操作

以下是 PyTorch 支持的比较、排序和取最大/最小值的操作及其相应的函数名:

操作函数名功能
大于/小于/大于等于/小于等于/等于/不等于torch.gt()/torch.lt()/torch.ge()/ torch.le()/torch.eq()/torch.ne()对两个张量进行比较,返回一个布尔型张量。
最大的k个数torch.topk()返回输入张量中最大的 k 个元素及其对应的索引。
排序torch.sort()对输入张量进行排序。
比较两个 tensor 最大/最小值torch.max()/torch.min()比较两个张量之间的最大值或最小值,返回一个张量。

下面是三个操作的示例:

  1. topk 操作:
x = t.tensor([1, 3, 2, 4, 5])
result = t.topk(x, k=3)print(result)  
'''输出:
torch.return_types.topk(
values=tensor([5, 4, 3]),
indices=tensor([4, 3, 1]))
'''

上述代码中,使用 topk() 函数获取张量 x 中的前三个最大值及其索引。

  1. sort 操作:
x = t.tensor([1, 3, 2, 4, 5])
result = t.sort(x)print(result)  
'''输出:
torch.return_types.sort(
values=tensor([1, 2, 3, 4, 5]),
indices=tensor([0, 2, 1, 3, 4]))
'''

上述代码中,使用 sort() 函数对张量 x 进行排序,并返回排好序的张量及其索引。

  1. max 操作:
x = t.tensor([1, 3, 2, 4, 5])
y = t.tensor([2, 3, 1, 5, 4])result = t.max(x, y)print(result)  # 输出 tensor([2, 3, 2, 5, 5])

上述代码中,使用 max() 函数比较张量 xy 中的最大值,并返回一个新的张量。

Tensor线性代数

函数名功能
torch.trace()计算矩阵的迹
torch.diag()提取矩阵的对角线元素
torch.triu()提取矩阵的上三角部分,可指定偏移量
torch.tril()提取矩阵的下三角部分,可指定偏移量
torch.mm()计算两个2维张量的矩阵乘法
torch.bmm()计算两个3维张量的批量矩阵乘法
torch.addmm()将两个矩阵相乘并加上一个矩阵
torch.addbmm()批量矩阵相乘并加上一个矩阵
torch.addmv()矩阵和向量相乘并加上一个向量
torch.addr()计算两个向量的外积
torch.badbmm()批量进行矩阵乘法操作的累积和
torch.t()转置张量或矩阵
torch.dot()计算两个1维张量的点积
torch.cross()计算两个3维张量的叉积
torch.inverse()计算方阵的逆矩阵
torch.svd()计算矩阵的奇异值分解

以下是几个线性代数操作的示例:

  1. torch.trace() 计算矩阵的迹:
x = t.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])result = t.trace(x)print(result)  # 输出 tensor(15)

上述代码中,我们使用 trace() 函数计算矩阵 x 的迹。

  1. torch.diag() 提取矩阵的对角线元素:
x = t.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])result = t.diag(x)print(result)  # 输出 tensor([1, 5, 9])

上述代码中,我们使用 diag() 函数提取矩阵 x 的对角线元素。

  1. torch.mm() 计算两个2维张量的矩阵乘法:
x = t.tensor([[1, 2], [3, 4]])
y = t.tensor([[5, 6], [7, 8]])result = t.mm(x, y)print(result)  # 输出 tensor([[19, 22], [43, 50]])

上述代码中,我们使用 mm() 函数计算张量 xy 的矩阵乘法。

Tensor和Numpy

Tensor和Numpy数组之间具有很高的相似性,彼此之间的互操作也非常简单高效。需要注意的是,Numpy和Tensor共享内存。

当遇到Tensor不支持的操作时,可先转成Numpy数组,处理后再转回tensor,其转换开销很小。

Numpy和Tensor共享内存

import numpy as np
a = np.ones([2, 3],dtype=np.float32)
print("\na:\n",a)# Tensor——>Numpy
b = t.from_numpy(a)
print("\nb:\n",b)a[0, 1]=100
print("\n改变后的b:\n",b)# Numpy——>Tensor
c = b.numpy() # a, b, c三个对象共享内存
print("\nc:\n",c)

输出结果为:

a:[[1. 1. 1.][1. 1. 1.]]b:tensor([[1., 1., 1.],[1., 1., 1.]])改变后的b:tensor([[  1., 100.,   1.],[  1.,   1.,   1.]])c:[[  1. 100.   1.][  1.   1.   1.]]

注意:numpy的数据类型和Tensor的类型不一样的时候,数据会被复制,不会共享内存

import numpy as np
a = np.ones([2, 3])
print("\na:\n",a)# Tensor——>Numpy
b = t.Tensor(a)
print("\nb:\n",b)# Tensor——>Numpy
c = t.from_numpy(a)
print("\nc:\n",c)a[0, 1]=100
print("\n改变后的b:\n",b,"\n\n改变后的c:\n",c)

输出结果为:

a:[[1. 1. 1.][1. 1. 1.]]b:tensor([[1., 1., 1.],[1., 1., 1.]])c:tensor([[1., 1., 1.],[1., 1., 1.]], dtype=torch.float64)改变后的b:tensor([[1., 1., 1.],[1., 1., 1.]]) 改变后的c:tensor([[  1., 100.,   1.],[  1.,   1.,   1.]], dtype=torch.float64)

Tensor的数据结构

tensor分为头信息区(Tensor)和存储区(Storage),信息区主要保存着tensor的形状(size)、步长(stride)、数据类型(type)等信息,而真正的数据则保存成连续数组。由于数据动辄成千上万,因此信息区元素占用内存较少,主要内存占用则取决于tensor中元素的数目,也即存储区的大小。
在这里插入图片描述

一个tensor有着与之相对应的storage, storage是在data之上封装的接口,不同tensor的头信息一般不同,但却可能使用相同的数据。

a = t.arange(0, 6)
print(a.storage())b = a.view(2, 3)
print(b.storage())# 一个对象的id值可以看作它在内存中的地址
# storage的内存地址一样,即是同一个storage
id(b.storage()) == id(a.storage())

输出结果为:

012345
[torch.storage.TypedStorage(dtype=torch.int64, device=cpu) of size 6]012345
[torch.storage.TypedStorage(dtype=torch.int64, device=cpu) of size 6]True

绝大多数操作并不修改tensor的数据,而只是修改了tensor的头信息。这种做法更节省内存,同时提升了处理速度。在使用中需要注意。 此外有些操作会导致tensor不连续,这时需调用tensor.contiguous方法将它们变成连续的数据,该方法会使数据复制一份,不再与原来的数据共享storage。

思考:高级索引一般不共享stroage,而普通索引共享storage,为什么?

在 PyTorch 中,高级索引(advanced indexing)和普通索引(basic indexing)的行为是不同的,这导致了对存储(storage)共享的处理方式也不同。

普通索引是指使用整数、切片或布尔掩码进行索引,例如 tensor[0]tensor[1:3]tensor[mask]。在这种情况下,返回的索引结果与原来的 Tensor 共享相同的存储空间。这意味着对返回的索引结果进行修改会影响到原来的 Tensor,因为它们实际上指向相同的内存位置。

示例代码:

import torchx = torch.tensor([1, 2, 3, 4, 5])
y = x[1:3]y[0] = 10print(x)  # 输出 tensor([ 1, 10,  3,  4,  5])

在上述代码中,对索引结果 y 进行修改后,原始 Tensor x 也被修改了,这是因为它们共享了相同的存储空间。

而对于高级索引,情况不同。高级索引是指使用整数数组或布尔数组进行索引,例如 tensor[[0, 2]]tensor[mask]。在这种情况下,返回的索引结果与原来的 Tensor 不再共享相同的存储空间。返回的索引结果将会创建一个新的 Tensor,其存储空间是独立的。

示例代码:

import torchx = torch.tensor([1, 2, 3, 4, 5])
indices = torch.tensor([0, 2])
y = x[indices]y[0] = 10print(x)  # 输出 tensor([1, 2, 3, 4, 5])

在上述代码中,对索引结果 y 进行修改后,原始 Tensor x 并没有被修改,因为它们不再共享相同的存储空间。

这种差异是由于普通索引和高级索引的底层机制不同所导致的。普通索引可以通过在存储中使用偏移量和步长来定位对应的元素,因此共享存储;而高级索引需要创建一个新的 Tensor 来存储索引结果,因此不共享存储。

了解这种差异很重要,因为它会影响到对原始 Tensor 和索引结果进行操作时是否会相互影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/129083.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

安全与HTTP协议:为何明文传输数据成为争议焦点?

🎬 江城开朗的豌豆:个人主页 🔥 个人专栏 :《 VUE 》 《 javaScript 》 📝 个人网站 :《 江城开朗的豌豆🫛 》 ⛺️ 生活的理想,就是为了理想的生活 ! 目录 ⭐ 专栏简介 📘 文章引言 一、H…

学习小结,学而时习之,坚持学习之,温顾学习之

学习python一个多月了,之前也有接触过,还花了不少钱报班,看了看入门的头两节课,就止步了。每一种编程语言的入门感觉都差不多,学到现在,我对python的基本数据类型还是没掌握好啊,每次列表字典怎…

2015年亚太杯APMCM数学建模大赛C题识别网络中的错误连接求解全过程文档及程序

2015年亚太杯APMCM数学建模大赛 C题 识别网络中的错误连接 原题再现 网络是描述真实系统结构的强大工具——社交网络描述人与人之间的关系,万维网描述网页之间的超链接关系。随着现代技术的发展,我们积累了越来越多的网络数据,但这些数据部…

最近面试者对接口测试的理解真把我给笑拥了~

📢专注于分享软件测试干货内容,欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!📢交流讨论:欢迎加入我们一起学习!📢资源分享:耗时200小时精选的「软件测试」资…

Hadoop PseudoDistributed Mode 伪分布式

Hadoop PseudoDistributed Mode 伪分布式加粗样式 hadoop101hadoop102hadoop103192.168.171.101192.168.171.102192.168.171.103namenodesecondary namenoderecource managerdatanodedatanodedatanodenodemanagernodemanagernodemanagerjob historyjob logjob logjob log 1. …

从零开始的JSON库教程(一)

本文是学习github大佬miloyip而做的读书笔记,项目点此进入 目录 1、JSON是什么 2、搭建编译环境 3、头文件与API设计 4、JSON的语法子集 5、单元测试 6、宏的编写技巧 7、实现解析器 8、关于断言 1、JSON是什么 JSON(JavaScript Object Notati…

UI设计一定不能错过的4款常用工具

虽然设计审美很重要,但软件只是一种工具,但就像走楼梯和坐电梯到达顶层一样,电梯的效率显然更高,易于使用的设计工具也是如此。让我们了解一下UI设计的主流软件,以及如何选择合适的设计软件。 即时设计 软件介绍 即…

uniapp小程序九宫格抽奖

定义好奖品下标,计时器开始抽奖,请求接口,出现中奖奖品之后,获取中奖商品对应的奖品下标,再次计时器判断当前移动的小标是否为中奖商品的下标,并且是否转到3圈(防止转1圈就停止)&…

Mac -- zsh-最新全网超详细的个性化终端(Terminal)颜色及vim颜色配置(亲测可行)

转自 Mac -- zsh-最新全网超详细的个性化终端(Terminal)颜色及vim颜色配置(亲测可行)_mac zsh-CSDN博客 以下都是苹果 设置,这是简化版的,详细的看我引用的 个性化终端颜色背景设置 显示检查器 打开终端,鼠标在终端中,右击&…

【后端开发】手写一个简单的线程池

半同步半异步线程池 半同步半异步线程池分为三层: 同步服务层 —— 处理来自上层的任务请求,将它们加入到排队层中等待处理。 同步排队层 —— 实际上是一个“同步队列”,允许多线程添加/取出任务,并保证线程安全。 异步服务层…

烂大街的测试左移和右移!

01、测试左移与右移的定义 通俗的讲:左移是往开发阶段移,右移是往发布之后移。 正常测试:提测后的测试工作——到——发布验证完成阶段。 测试左移:提测之前的测试。 如:代码单元测试,代码质量检测&…

Nacos报错Connection refused (Connection refused)(最后原因醉了,非常醉)

目录 一、问题产生二、排查思路1.nacos拒绝连接,排查思路:2.Nacos启动成功但是拒绝连接的几种原因: 三、实操过程(着急解决问题直接看这个)1.启动Nacos2.查看Nacos启动日志3.根据日志处理问题4.修改Nacos5.重启Nacos 一…

c++qt学习对象树

1.当创建的对象在堆区时候,如果指定的父亲是QObject派生下来的类或者QObject子类派生下来的类,可以不用管理释放的操作,将对象会放在对象树中。 2.一定程度上简化了内存回收机制 构造顺序与析构顺序相反

SpringBoot整合Activiti7——全局监听器(八)

文章目录 一、全局监听器事件类型配置方式(选)日志监听器代码实现xml文件创建全局监听器全局配置类测试流程部署流程启动流程 一、全局监听器 它是引擎范围的事件监听器,可以捕获所有的Activiti事件。 事件类型 ActivitiEventType 枚举类中包含全部事件类型 配置方…

跳跳狗小游戏

欢迎来到程序小院 跳跳狗 玩法:一直弹跳的狗狗,鼠标点击屏幕左右方向键进行弹跳,弹到不同物品会有不同的分数减扣,规定的时间3分钟内完成狗狗弹跳,快去跳跳狗吧^^。开始游戏https://www.ormcc.com/play/gameStart/198…

MySQL用户管理和授权

目录 一.用户管理 1.1.新建用户 1.2.查看用户 1.3.重命名用户rename 1.4.删除用户 1.5.修改当前登录用户密码 1.6.修改其他用户密码 1.7.忘记root 密码并找回 二.数据库用户授权 2.1.all privilege包含的权限 2.2.授予权限 ①允许指定用户查询指定数据库表 ②允许…

比较Excel中的两列目录编号是否一致

使用java代码比较excel中两列是否有包含关系,若有包含关系,核对编号是否一致。 excel数据样例如下: package com.itownet.hg;import org.apache.poi.xssf.usermodel.XSSFSheet; import org.apache.poi.xssf.usermodel.XSSFWorkbook;import j…

sqlsugar查询数据库下的所有表,批量修改表名字

查询数据库中的所有表 using SqlSugar;namespace 批量修改数据库表名 {internal class Program{static void Main(string[] args){SqlSugarClient sqlSugarClient new SqlSugarClient(new ConnectionConfig(){ConnectionString "Data Source(localdb)\\MSSQLLocalDB;In…

双热点机制结合。5+铜死亡+铁死亡相关基因生信思路

今天给同学们分享一篇结合铜死亡和铁死亡相关基因预测肿瘤预后、免疫和药敏的生信文章“A novel signature of combing cuproptosis- with ferroptosis-related genes for prediction of prognosis, immunologic therapy responses and drug sensitivity in hepatocellular car…

Jenkins自动化部署相关shell命令

1. 只后台启动: nohup java -jar jar/demo*.jar & 2. 增加命令启动日志输出位置,防止超时处理配置: nohup java -jar /soft/gitee-demo-0.0.1-SNAPSHOT.jar >mylog.log 2>&1 & 简化写法: nohup java -jar /s…