OpenCV:图像直方图计算

b153934801fde1833a08eca77f3b97e0.jpeg

图像直方图为图像中像素强度的分布提供了有价值的见解。通过了解直方图,你可以获得有关图像对比度、亮度和整体色调分布的信息。这些知识对于图像增强、图像分割和特征提取等任务非常有用。

本文旨在为学习如何使用 OpenCV 执行图像直方图计算提供清晰且全面的指南。通过理解和应用直方图分析技术,你可以提高图像质量、执行阈值操作、分析颜色成分、提取有用的特征以及更有效地可视化和理解图像。

图像直方图

每个图像都由单独的像素组成,就像网格上的小点一样。假设我们有一个大小为 250 列和 100 行的图像,总共 2500 个像素。每个像素都可以有不同的颜色值,用 0 到 255 范围内的数字表示。

为了可视化图像中颜色值的分布,我们可以创建直方图。该直方图充当一组条形图,显示具有相同颜色值的像素数。通过比较条形的高度,我们可以轻松识别图像中哪些颜色值更突出或更频繁地出现。这种图形表示为图像的整体颜色组成和分布提供了宝贵的见解。

364b4a7ae167f57b3adeda7bd611df67.jpeg

图像直方图(单色)

现在记住,像素强度

0 → 黑色

255 → 白色

因此,如果我们的直方图向左移动(左偏),则图像会包含更多黑色像素;如果我们的直方图向右移动(右偏),图像会包含更多白色像素。

a2353b9b67b4a4b07a73f6f49827e6fc.jpeg

左偏和右偏直方图

所以我相信你已经完全理解了,

  • 更黑→更暗的图像

  • 更白→更亮的图像

0c3d5815073cc9e250b7aab3c4a126d7.jpeg

现在让我们在 OpenCV 中进行直方图计算。

首先,我们将加载图像并将其可视化。

#import necessary libraries
import cv2
import numpy as np
import matplotlib.pyplot as plt#using opencv to read an image
#BGR Image
image = cv2.imread("C:/users/public/pictures/nature.jpg")#visualizing
cv2.namedWindow("BGR Image", cv2.WINDOW_NORMAL);
cv2.imshow("BGR Image",image);cv2.waitKey(0) & 0xFF 
cv2.destroyAllWindows()
e212df181a390649a75aec4219fdfb5c.jpeg

在绘制直方图之前,我们可以分离该图像中的颜色通道。

B = image[:,:,0] #blue layer
G = image[:,:,1] #green layer
R = image[:,:,2] #red layer

现在我们使用 OpenCV 函数 cv.calcHist() 计算并找到每一层的直方图,并使用 OpenCV 和 Matplotlib 函数绘制这些直方图

cv.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]])

● images:uint8 或float32 类型的源图像。它应该放在方括号中,即“[img]”。

● channels:也在方括号中给出。它是我们计算直方图的通道的索引。例如,如果输入是灰度图像,则其值为[0]。对于彩色图像,可以通过[0]、[1]或[2]分别计算蓝色、绿色或红色通道的直方图。

● mask:蒙版图像。为了找到整个图像的直方图,它被指定为“None”。但是,如果你想找到图像特定区域的直方图,则必须为其创建一个蒙版图像并将其作为蒙版。

● histSize:BIN 计数。需要在方括号中给出。对于全尺寸,我们通过[256]。

● ranges:范围。通常是[0,256]。

B_histo = cv2.calcHist([image],[0], None, [256], [0,256])
G_histo = cv2.calcHist([image],[1], None, [256], [0,256])
R_histo = cv2.calcHist([image],[2], None, [256], [0,256])

现在我们使用 matplotlib 将它们绘制在子图中。

e9261b5669957f3ebd95e324c03f54a0.jpeg

你可以在不同设置的图像上尝试此操作。

4e970f7c0b4c0e9fe614efe6207bfa47.jpeg
20e29018fa217a983364a3904bbb6022.jpeg

完整代码

#import necessary libraries
import cv2
import numpy as np
import matplotlib.pyplot as plt#using opencv to read an image
#BGR Image
image = cv2.imread("C:/users/public/pictures/nature.jpg")#seperating colour channels
B = image[:,:,0] #blue layer
G = image[:,:,1] #green layer
R = image[:,:,2] #red layer#calculating histograms for each channel
B_histo = cv2.calcHist([image],[0], None, [256], [0,256])
G_histo = cv2.calcHist([image],[1], None, [256], [0,256])
R_histo = cv2.calcHist([image],[2], None, [256], [0,256])#visualizing histograms
plt.subplot(2, 2, 1)
plt.plot(B_histo, 'b')
plt.subplot(2, 2, 2)
plt.plot(G_histo, 'g')
plt.subplot(2, 2, 3)
plt.plot(R_histo, 'r')#visualizing image
cv2.namedWindow("BGR Image", cv2.WINDOW_NORMAL);
cv2.imshow("BGR Image",image);
cv2.waitKey(0) & 0xFF 
cv2.destroyAllWindows()

曝光过度和曝光不足的图像

然后我们可以扩展这个想法来识别曝光过度(太亮)的图像和曝光不足(太暗)的图像。

b86b040451e1b3e7909fb46b0175dd09.jpeg

让我们看看这些图像的直方图。

f587701d1d47cc98a94c0f16f8cd7097.jpeg

使用 Matplotib 和 OpenCV 绘制直方图

显然,一个直方图左偏,表示图像曝光不足,而另一直方图右偏,表示图像曝光过度。

在这里,我们只需查看直方图就可以清楚地了解图像是否曝光不足或曝光过度。

直方图均衡

考虑曝光不足或曝光过度的图像,其像素值仅局限于某个特定的值范围。

例如:较亮的图像将所有像素限制为高值。

但是一个好的图像将具有来自图像的所有区域的像素。所以你需要将这个直方图拉伸到两端。这通常会提高图像的对比度。

当对彩色图像执行直方图均衡时,我们通常将该过程分别应用于图像中RGB颜色值的红色、绿色和蓝色分量。

首先,我们读取图像并将图像分成三个颜色层。

import cv2
import numpy as np
import matplotlib.pyplot as plt#using opencv to read an image
#BGR Image
image = cv2.imread("C:/users/public/pictures/underexposed_image.jpg")#seperating colour channels
B = image[:,:,0] #blue layer
G = image[:,:,1] #green layer
R = image[:,:,2] #red layer

然后我们使用 cv.equalizeHist () 来均衡每个颜色层的直方图。使用 Matplotlib 和 OpenCV 将它们可视化。

b_equi = cv2.equalizeHist(B)
g_equi = cv2.equalizeHist(G)
r_equi = cv2.equalizeHist(R)plt.imshow(b_equi)
plt.title("b_equi")
plt.show()
plt.imshow(g_equi)
plt.title("g_equi")
plt.show()
plt.imshow(r_equi)
plt.title("r_equi")
plt.show()
45aac29ecd5ae5819268e61fdb51b592.jpeg

使用 OpenCV 均衡 R、G 和 B 层

通过均衡的颜色层,我们使用 cv.calcHist() 计算每种颜色的直方图。然后将它们全部绘制出来。

B_histo = cv2.calcHist([b_equi],[0], None, [256], [0,256]) 
G_histo = cv2.calcHist([g_equi],[0], None, [256], [0,256])
R_histo = cv2.calcHist([r_equi],[0], None, [256], [0,256])plt.subplot(2, 2, 1)
plt.plot(G_histo, 'g')
plt.subplot(2, 2, 2)
plt.plot(R_histo, 'r')
plt.subplot(2, 2, 3)
plt.plot(B_histo, 'b')

你一定已经注意到,我们在“channels”位置仅使用了 [0]。在前面的例子中,我们使用了所有[0]、[1]和[2]。这是由于分离通道的可用性。因此只有 1 个通道。因此,对于所有直方图,“channels”为 [0]

或者,你可以获取原始图像中每个通道的直方图,并使用均衡后的颜色层绘制它们。

#calculate histograms for each channel seperately
#Equilized channels
B_histo = cv2.calcHist([b_equi],[0], None, [256], [0,256]) 
G_histo = cv2.calcHist([g_equi],[0], None, [256], [0,256])
R_histo = cv2.calcHist([r_equi],[0], None, [256], [0,256])
#Original channels
BO_histo = cv2.calcHist([image],[0], None, [256], [0,256]) 
GO_histo = cv2.calcHist([image],[1], None, [256], [0,256])
RO_histo = cv2.calcHist([image],[2], None, [256], [0,256])#visualize the channel histograms seperately
plt.figure(figsize=(10,12), )plt.subplot(3, 2, 1)
plt.title("Green Original")
plt.plot(GO_histo, 'g')plt.subplot(3, 2, 2)
plt.title("Green Equilized")
plt.plot(G_histo, 'g')plt.subplot(3, 2, 3)
plt.title("Red Original")
plt.plot(RO_histo, 'r')plt.subplot(3, 2, 4)
plt.title("Red Equilized")
plt.plot(R_histo, 'r')plt.subplot(3, 2, 5)
plt.title("Blue Original")
plt.plot(BO_histo, 'b')plt.subplot(3, 2, 6)
plt.title("Blue Equilized")
plt.plot(B_histo, 'b')
774c438574d3a46867d9cc7ef9d59230.jpeg
s

原始图像颜色直方图与均衡图像颜色直方图

继续下一步,我们现在拥有的只是层。为了从中获得图像,我们需要合并它们。

equi_im = cv2.merge([b_equi,g_equi,r_equi])

现在让我们并排查看均衡后的图像和原始图像。

cv2.namedWindow("Original Image", cv2.WINDOW_NORMAL);
cv2.imshow("Original Image",image);
cv2.namedWindow("New Image", cv2.WINDOW_NORMAL);
cv2.imshow("New Image",equi_im);cv2.waitKey(0) & 0xFF 
cv2.destroyAllWindows()
5802428c21667de49ea0f314ee3d9dd3.jpeg

使用 OpenCV 均衡图像

完整代码

import cv2
import numpy as np
import matplotlib.pyplot as plt#using opencv to read an image
#BGR Image
image = cv2.imread("C:/users/public/pictures/underexposed_image.jpg")#seperating colour channels
B = image[:,:,0] #blue layer
G = image[:,:,1] #green layer
R = image[:,:,2] #red layer#equilize each channel seperately
b_equi = cv2.equalizeHist(B)
g_equi = cv2.equalizeHist(G)
r_equi = cv2.equalizeHist(R)#calculate histograms for each channel seperately
B_histo = cv2.calcHist([b_equi],[0], None, [256], [0,256]) 
G_histo = cv2.calcHist([g_equi],[0], None, [256], [0,256])
R_histo = cv2.calcHist([r_equi],[0], None, [256], [0,256])#merge thechannels and create new image
equi_im = cv2.merge([b_equi,g_equi,r_equi])#visualize the equilized channels seperately
plt.imshow(b_equi)
plt.title("b_equi")
plt.show()
plt.imshow(g_equi)
plt.title("g_equi")
plt.show()
plt.imshow(r_equi)
plt.title("r_equi")
plt.show()#visualize the channel histograms seperately
plt.subplot(2, 2, 1)
plt.plot(G_histo, 'g')
plt.subplot(2, 2, 2)
plt.plot(R_histo, 'r')
plt.subplot(2, 2, 3)
plt.plot(B_histo, 'b')#visualize the original and equilized images
cv2.namedWindow("Original Image", cv2.WINDOW_NORMAL);
cv2.imshow("Original Image",image);
cv2.namedWindow("New Image", cv2.WINDOW_NORMAL);
cv2.imshow("New Image",equi_im);cv2.waitKey(0) & 0xFF 
cv2.destroyAllWindows()

感谢阅读!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/12824.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

高清视频制作GIF怎么操作?一个工具在线完成视频转GIF

一段视频为了方便传输分享想要做成GIF动画的时候要怎么操作呢?很简单,只需要一款专业的GIF在线制作工具-GIF中文网,使用视频转GIF(https://www.gif.cn/)功能,上新MP4格式视频,能够快速制作1分钟…

Practice2|189. 轮转数组、724. 寻找数组的中心下标

189. 轮转数组 1.题目: 给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。 示例 1: 输入: nums [1,2,3,4,5,6,7], k 3 输出: [5,6,7,1,2,3,4] 解释: 向右轮转 1 步: [7,1,2,3,4,5,6] 向右轮转 2 步: [6,7,1,2,…

Django学习笔记-视图(views)的使用

Django中可以使用views进行管理,类似于WPF的MVVM的ViewModel层,也相当于MVC架构的模Controller层。 一、基于函数的视图FBV(Function-Based View) 通过定义一个函数,包含HttpRequest对象作为参数,用来接受…

如何提高自己的软件测试水平之bug定位

同学们在面试投简历的时候会经常看到人家公司JD上写的要求之一,如下: 这句话大家不要以为随便写写的,在我工作的十几年过程中起码见过10个以上试用期没过的公司新人,公司在衡量一个测试工程师是否专业的标准之一就是:…

大数据面试题:Kafka怎么保证数据不丢失,不重复?

面试题来源: 《大数据面试题 V4.0》 大数据面试题V3.0,523道题,679页,46w字 可回答:Kafka如何保证生产者不丢失数据,消费者不丢失数据? 参考答案: 存在数据丢失的几种情况 使用…

Linux下在终端输入密码隐藏方法

Linux系统中,如何将在终端输入密码时将密码隐藏? 最近做简单的登录界面时,不做任何操作的话,在终端输入密码的同时也会显示输入的密码是什么,这样对于隐蔽性和使用都有不好的体验。那么我就想到将密码用字符*隐藏起来…

STM32 Flash学习(三)

硬件设计 开机的时候先显示一些提示信息,然后在主循环里面检测两个按键。 其中1个按键WK_UP用来执行写入FLASH的操作,另一个按照KEY0用来执行读出操作。 软件设计 添加了两个文件stmflash.c和stmflash.h。 #include "stmflash.h" #include…

freeswitch的mod_xml_curl模块

概述 freeswitch是一款简单好用的VOIP开源软交换平台。 随着fs服务的增多,每一台fs都需要在后台单独配置,耗时耗力,心力憔悴。 如果有一个集中管理配置的配置中心,统一管理所有fs的配置,并可以实现动态的修改配置就…

自动驾驶地面车辆的雷达里程计:方法与数据集综述

在不同复杂环境中,各种传感器的性能会有所不同。它们各自具有优势和劣势,因此融合多模态数据提供了一种解决方案,可以克服各个传感器单独使用时的限制[90]–[92]。此外,许多讨论的传感器已经广泛应用于自动驾驶领域,因…

PHP 支付宝支付、订阅支付(周期扣款)整理汇总

最近项目中需要使用支付宝的周期扣款,整理一下各种封装方法 APP支付(服务端) /******************************************************* 调用方法******************************************************/function test_pay(){$isSubscri…

mybatis日志工厂

前言: 如果一个数据库操作,出现异常,我们需要排错,日志就是最好的助手 官方给我们提供了logImpl:指定 MyBatis 所用日志的具体实现,未指定时将自动查找。 默认工厂: 在配置文件里添加&#xf…

深度剖析APP开发中的UI/UX设计

作为一个 UI/UX设计师,除了要关注 UI/UX设计之外,还要掌握移动开发知识,同时在日常工作中也需要对用户体验有一定的认知,在本次分享中,笔者就针对自己在工作中积累的一些经验来进行一个总结,希望能够帮助到…

cartographer发布畸变矫正后的scan数据

实现方式: 模仿源代码,在cartographer_ros写一个函数,以函数指针的方式传入cartographer后端,然后接收矫正后的scan数据,然后按照话题laserScan发布出来。 需要同时发布点云强度信息的,还要自己添加含有强度…

如何连接远程服务器?快解析内内网穿透可以吗?

如今我们迎来了数字化转型的时代,众多企业来为了更好地推动业务的发展,常常需要在公司内部搭建一个远程服务器。然而,对于企业员工来说,在工作过程中经常需要与这个服务器进行互动,而服务器位于公司的局域网中&#xf…

Go重写Redis中间件 - Go实现Redis协议解析器

Go实现Redis协议解析器 Redis网络协议详解 在解决完通信后,下一步就是搞清楚 Redis 的协议-RESP协议,其实就是一套类似JSON、Protocol Buffers的序列化协议,也就是我们的客户端和服务端通信的协议 RESP定义了5种格式 简单字符串(Simple String) : 服务器用来返回简单的结…

简述IO(BIO NIO IO多路复用)

在unix网络变成中的五种IO模型: Blocking IO(阻塞IO) NoneBlocking IO (非阻塞IO) IO mulitplexing(IO多路复用) signal driven IO (信号驱动IO) asynchronous IO (异步IO) BIO BIO(Blocking IO)是一种阻塞IO模型,也是传统的IO操作模型之一…

Windows上安装和使用git到gitoschina和github上_亲测

Windows上安装和使用git到gitoschina和github上_亲测 git介绍与在windows上安装创建SSHkey在gitoschina使用 【git介绍与在windows上安装】 Git是一款免费、开源的分布式版本控制系统&#xff0c;用于敏捷高效地处理任何或小或大的项目。 相关介绍可以参考 <百度百科>…

【Vue3 + Element Plus】纯前端实现本地数据分页

先附上效果图 Vue3 Element Plus 实现本地分页 首页弹窗代码 <el-table :data"tableData" style"width: 100%" border stripe><el-table-column v-for"{ id, prop, label } in tableColumn" :prop"prop" :key"id"…

RocketMQ概论

目录 前言&#xff1a; 1.概述 2.下载安装、集群搭建 3.消息模型 4.如何保证吞吐量 4.1.消息存储 4.1.1顺序读写 4.1.2.异步刷盘 4.1.3.零拷贝 4.2.网络传输 前言&#xff1a; RocketMQ的代码示例在安装目录下有全套详细demo&#xff0c;所以本文不侧重于讲API这种死…

【Rust 基础篇】Rust默认泛型参数:简化泛型使用

导言 Rust是一种以安全性和高效性著称的系统级编程语言&#xff0c;其设计哲学是在不损失性能的前提下&#xff0c;保障代码的内存安全和线程安全。在Rust中&#xff0c;泛型是一种非常重要的特性&#xff0c;它允许我们编写一种可以在多种数据类型上进行抽象的代码。然而&…