回归预测 | Matlab实现WOA-CNN-SVM鲸鱼算法优化卷积神经网络-支持向量机的多输入单输出回归预测

回归预测 | Matlab实现WOA-CNN-SVM鲸鱼算法优化卷积神经网络-支持向量机的多输入单输出回归预测

目录

    • 回归预测 | Matlab实现WOA-CNN-SVM鲸鱼算法优化卷积神经网络-支持向量机的多输入单输出回归预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.WOA-CNN-SVM鲸鱼算法优化卷积神经网络-支持向量机的多变量回归预测 可直接运行Matlab;
2.评价指标包括: R2、MAE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。要求2021版本及以上。
3.鲸鱼算法WOA优化的参数为:CNN的批处理大小、学习率、正则化系数,能够避免人工选取参数的盲目性,有效提高其预测精度。
4.main.m为主程序,其他为函数文件,无需运行,data为数据,多输入单输出,数据回归预测,输入7个特征,输出1个变量,直接替换Excel数据即可用!注释清晰,适合新手小白~

程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab实现WOA-CNN-SVM鲸鱼算法优化卷积神经网络-支持向量机的多输入单输出回归预测
% The Whale Optimization Algorithm
function [Best_Cost,Best_pos,curve]=WOA(pop,Max_iter,lb,ub,dim,fobj)% initialize position vector and score for the leader
Best_pos=zeros(1,dim);
Best_Cost=inf; %change this to -inf for maximization problems%Initialize the positions of search agents
Positions=initialization(pop,dim,ub,lb);curve=zeros(1,Max_iter);t=0;% Loop counter% Main loop
while t<Max_iterfor i=1:size(Positions,1)% Return back the search agents that go beyond the boundaries of the search spaceFlag4ub=Positions(i,:)>ub;Flag4lb=Positions(i,:)<lb;Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;% Calculate objective function for each search agentfitness=fobj(Positions(i,:));% Update the leaderif fitness<Best_Cost % Change this to > for maximization problemBest_Cost=fitness; % Update alphaBest_pos=Positions(i,:);endend

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/126841.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UML类图关系

1.依赖 依赖关系由箭头表示&#xff0c;含义为A类在类中用到了B类&#xff0c;如B类作为A类的属性、参数、返回值等都属于依赖关系。 2.泛化&#xff08;继承&#xff09; 泛化用三角箭头和直线表示&#xff0c;extend。 3.实现 实现用三角箭头和虚线表示&#xff0c;在…

智能井盖传感器有哪些?万宾科技智能井盖效果

在城市治理过程之中&#xff0c;小小的井盖却成为影响民生的一个重要方面&#xff0c;因为井盖一旦出现问题&#xff0c;会严重影响市民的生命安全&#xff0c;并且传统的井盖一般都会采用人工巡检的方式&#xff0c;这就导致了巡检的难度较大&#xff0c;从而不能对城市各个角…

CSS3媒体查询与页面自适应

2017年9月&#xff0c;W3C发布媒体查询(Media Query Level 4)候选推荐标准规范&#xff0c;它扩展了已经发布的媒体查询的功能。该规范用于CSS的media规则&#xff0c;可以为文档设定特定条件的样式&#xff0c;也可以用于HTML、JavaScript等语言。 1、媒体查询基础 媒体查询…

兴业银行养老金拉新项目上线啦,地推百搭项目

兴业银行养老金就在 ”聚量推客“ 申请开通 今年最火的银行拉新项目就是养老金的 单价高 数据好 目前开通养老金的银行有 兴业银行养老金拉新 交通银行养老金拉新 工商银行养老金拉新 招商银行养老金拉新 浦发银行养老金拉新 广发银行养老金拉新等。。还有很多都开通了…

Youtube DNN:Deep Neural Networks for YouTube Recommendations

1.介绍 本文主要解决的三个挑战&#xff1a; 大规模的推荐场景&#xff0c;能够支持分布式训练和提供有效率的服务。不断更新的新物料。稀疏的用户行为&#xff0c;包含大量的噪声。 2.推荐系统 文章包含推荐系统的两阶段模型&#xff1a;召回和排序。 召回网络根据用户的历…

三国杀中的概率学问题2——神郭嘉

前言 四年前&#xff0c;我写过一篇博客三国杀中的概率学问题。当时有一条评论&#xff0c;让我算一算神郭嘉慧识的摸牌数。这也是我写这篇博客的动力来源。相比起四年前&#xff0c;我的数学水平渐长&#xff0c;于是想做一些更深入的数学问题。这篇文章将从更加理论的角度来…

密码学基础

密码学总览 信息安全面临的危险与应对这些威胁的密码技术&#xff1a; 关于上图中的威胁&#xff0c;这里在简单的说明&#xff1a; 窃听&#xff1a;指的是需要保密的消息被第三方获取。篡改&#xff1a;指的是消息的内容被第三方修改&#xff0c;达到欺骗的效果。伪装&…

Window下SRS服务器的搭建

---2023.7.23 准备材料 srs下载&#xff1a;GitHub - ossrs/srs at 3.0release 目前srs release到5.0版本。 srs官方文档&#xff1a;Introduction | SRS (ossrs.net) Docker下载&#xff1a;Download Docker Desktop | Docker 进入docker官网选择window版本直接下载。由…

7.多线程之单例模式

单例模式 文章目录 单例模式1. 什么是单例模式2. 饿汉模式3. 懒汉模式3.1 单线程版&#xff1a;3.2 多线程版 1. 什么是单例模式 单例模式是一种设计模式&#xff0c;常见的设计模式还有工厂模式、建造者模式等。 设计模式是一套被反复使用、多数人知晓的、经过分类编目的、代码…

Vue3前端100个必要的知识点

为什么是必要的&#xff0c;就是这100个知识点学完后&#xff0c;能独立完成一个小项目。最终能得到一个解决方案。也算是前端知识的积累。如果后面有需要的地方可以回来查。100个其实比较多&#xff0c;我会按新手老鸟&#xff0c;大神来分成3个等级&#xff0c;话不多说&…

SQLyog连接数据库报plugin caching_sha2_password could not be loaded......解决方案

问题描述 问题分析 因为MySQL新版默认使用caching_sha2_password作为身份验证的插件&#xff0c;而旧版本使用的是mysql_native_password。当出现plugin caching_sha2_password could not be loaded报错&#xff0c;我们更换为旧版本 如何解决 先使用cmd命令登录MySQL&a…

【IDEA】设置sql提示

第一步&#xff1a;注入SQL语言 1.首先选择任意一条sql语句&#xff0c;右击&#xff0c;选择 ‘显示上下文操作’ 2.选择 ‘注入语言或引用’ 3. 往下翻&#xff0c;找到MySQL 第二步&#xff1a;配置MySQL数据库连接 1.首先点击侧边的数据库&#xff0c;再点击上面的加号 2…

蓝桥杯刷题

欢迎来到Cefler的博客&#x1f601; &#x1f54c;博客主页&#xff1a;那个传说中的man的主页 &#x1f3e0;个人专栏&#xff1a;题目解析 &#x1f30e;推荐文章&#xff1a;题目大解析&#xff08;3&#xff09; &#x1f449;&#x1f3fb;最大降雨量 原题链接&#xff1…

前端移动高级web详细解析五

响应式布局方案 媒体查询 Bootstrap框架 01-媒体查询 基本写法 max-width&#xff1a;最大宽度&#xff08;小于等于&#xff09; min-width&#xff1a;最小宽度&#xff08;大于等于&#xff09; 书写顺序 min-width&#xff08;从小到大&#xff09; max-width&…

MySQL数据库入门到精通——运维篇(1)

MySQL数据库入门到精通——运维篇&#xff08;1&#xff09; 1. 日志1.1 错误日志1.2 二进制日志1.3 查询日志1.4 慢查询日志 2. 主从复制2.1 主从复制的概述2.2 主从复制的原理2.3 主从复制的搭建2.3.1 服务器准备2.3.2 主库配置2.3.3 从库配置2.3.4 测试 1. 日志 在任何一种…

python实现MC协议(SLMP 3E帧)的TCP服务端(篇一)

python实现MC协议&#xff08;SLMP 3E帧&#xff09;的TCP服务端是一件稍微麻烦点的事情。它不像modbusTCP那样&#xff0c;可以使用现成的pymodbus模块去实现。但是&#xff0c;我们可以根据协议帧进行组包&#xff0c;自己去实现帧的格式&#xff0c;而这一切可以基于socket模…

记录 vue + vuetify + electron 安装过程

NodeJs 版本&#xff1a; 20 内容来自&#xff1a; Electron Vue.js Vuetify 构建跨平台应用_思月行云的博客-CSDN博客文章浏览阅读61次。Go coding!https://blog.csdn.net/kenkao/article/details/132600542 npm config set registry https://registry.npm.taobao.org np…

【c++|opencv】二、灰度变换和空间滤波---2.直方图和均衡化

every blog every motto: You can do more than you think. https://blog.csdn.net/weixin_39190382?typeblog 0. 前言 图像直方图、直方图均衡化 1. 图像直方图 #include <iostream> #include <opencv2/opencv.hpp>using namespace cv; using namespace std;…

Android NDK开发详解之调试和性能分析的系统跟踪概览

Android NDK开发详解之调试和性能分析的系统跟踪概览 系统跟踪指南 “系统跟踪”就是记录短时间内的设备活动。系统跟踪会生成跟踪文件&#xff0c;该文件可用于生成系统报告。此报告有助于您了解如何最有效地提升应用或游戏的性能。 有关进行跟踪和性能分析的全面介绍&#x…

groovy下载与安装

Groovy是一种基于JVM&#xff08;Java虚拟机&#xff09;的敏捷开发语言&#xff0c;它结合了Python、Ruby和Smalltalk的许多强大的特性&#xff0c;Groovy 代码能够与 Java 代码很好地结合&#xff0c;也能用于扩展现有代码。由于其运行在 JVM 上的特性&#xff0c;Groovy也可…