【k8s】pod集群调度

调度约束

Kubernetes 是通过 List-Watch    **** 的机制进行每个组件的协作,保持数据同步的,每个组件之间的设计实现了解耦。

用户是通过 kubectl 根据配置文件,向 APIServer 发送命令,在 Node 节点上面建立 Pod 和 Container。
APIServer 经过 API 调用,权限控制,调用资源和存储资源的过程,实际上还没有真正开始部署应用。这里    需要 Controller Manager、Scheduler 和 kubelet 的协助才能完成整个部署过程。

在 Kubernetes 中,所有部署的信息都会写到 etcd 中保存。实际上 etcd 在存储部署信息的时候,会发送 Create 事件给 APIServer,而 APIServer 会通过监听(Watch)etcd 发过来的事件。其他组件也会监听(Watch)APIServer 发出来的事件。

Pod 是 Kubernetes 的基础单元,Pod 启动典型创建过程如下:    工作机制 ****
(1)这里有三个 List-Watch,分别是 Controller Manager(运行在 Master),Scheduler(运行在 Master),kubelet(运行在 Node)。 他们在进程已启动就会监听(Watch)APIServer 发出来的事件。

(2)用户通过 kubectl 或其他 API 客户端提交请求给 APIServer 来建立一个 Pod 对象副本。

(3)APIServer 尝试着将 Pod 对象的相关元信息存入 etcd 中,待写入操作执行完成,APIServer 即会返回确认信息至客户端。

(4)当 etcd 接受创建 Pod 信息以后,会发送一个 Create 事件给 APIServer。

(5)由于 Controller Manager 一直在监听(Watch,通过https的6443端口)APIServer 中的事件。此时 APIServer 接受到了 Create 事件,又会发送给 Controller Manager。

(6)Controller Manager 在接到 Create 事件以后,调用其中的 Replication Controller 来保证 Node 上面需要创建的副本数量。一旦副本数量少于 RC 中定义的数量,RC 会自动创建副本。总之它是保证副本数量的 Controller(PS:扩容缩容的担当)。

(7)在 Controller Manager 创建 Pod 副本以后,APIServer 会在 etcd 中记录这个 Pod 的详细信息。例如 Pod 的副本数,Container 的内容是什么。

(8)同样的 etcd 会将创建 Pod 的信息通过事件发送给 APIServer。

(9)由于 Scheduler 在监听(Watch)APIServer,并且它在系统中起到了“承上启下”的作用,“承上”是指它负责接收创建的 Pod 事件,为其安排 Node;“启下”是指安置工作完成后,Node 上的 kubelet 进程会接管后继工作,负责 Pod 生命周期中的“下半生”。 换句话说,Scheduler 的作用是将待调度的 Pod 按照调度算法和策略绑定到集群中 Node 上。

(10)Scheduler 调度完毕以后会更新 Pod 的信息,此时的信息更加丰富了。除了知道 Pod 的副本数量,副本内容。还知道部署到哪个 Node 上面了。并将上面的 Pod 信息更新至 API Server,由 APIServer 更新至 etcd 中,保存起来。

(11)etcd 将更新成功的事件发送给 APIServer,APIServer 也开始反映此 Pod 对象的调度结果。

(12)kubelet 是在 Node 上面运行的进程,它也通过 List-Watch 的方式监听(Watch,通过https的6443端口)APIServer 发送的 Pod 更新的事件。kubelet 会尝试在当前节点上调用 Docker 启动容器,并将 Pod 以及容器的结果状态回送至 APIServer。

(13)APIServer 将 Pod 状态信息存入 etcd 中。在 etcd 确认写入操作成功完成后,APIServer将确认信息发送至相关的 kubelet,事件将通过它被接受。

#注意:在创建 Pod 的工作就已经完成了后,为什么 kubelet 还要一直监听呢?原因很简单,假设这个时候 kubectl 发命令,要扩充 Pod 副本数量,那么上面的流程又会触发一遍,kubelet 会根据最新的 Pod 的部署情况调整 Node 的资源。又或者 Pod 副本数量没有发生变化,但是其中的镜像文件升级了,kubelet 也会自动获取最新的镜像文件并且加载。
 

//调度过程   ***


Scheduler 是 kubernetes 的调度器,主要的任务是把定义的 pod 分配到集群的节点上。其主要考虑的问题如下:
●公平:如何保证每个节点都能被分配资源
●资源高效利用:集群所有资源最大化被使用
●效率:调度的性能要好,能够尽快地对大批量的 pod 完成调度工作
●灵活:允许用户根据自己的需求控制调度的逻辑

Sheduler 是作为单独的程序运行的,启动之后会一直监听 APIServer,获取 spec.nodeName 为空的 pod,对每个 pod 都会创建一个 binding,表明该 pod 应该放到哪个节点上。

调度分为几个部分:首先是过滤掉不满足条件的节点,这个过程称为预算策略(predicate);然后对通过的节点按照优先级排序,这个是优选策略(priorities);最后从中选择优先级最高的节点。如果中间任何一步骤有错误,就直接返回错误。

Predicate 有一系列的常见的算法可以使用:     **
●PodFitsResources:节点上剩余的资源是否大于 pod 请求的资源nodeName,检查节点名称是否和 NodeName 匹配。。
●PodFitsHost:如果 pod 指定了 NodeName,检查节点名称是否和 NodeName 匹配。
●PodFitsHostPorts:节点上已经使用的 port 是否和 pod 申请的 port 冲突。
●PodSelectorMatches:过滤掉和 pod 指定的 label 不匹配的节点。 
●NoDiskConflict:已经 mount 的 volume 和 pod 指定的 volume 不冲突,除非它们都是只读。

如果在 predicate 过程中没有合适的节点,pod 会一直在 pending 状态,不断重试调度,直到有节点满足条件。 经过这个步骤,如果有多个节点满足条件,就继续 priorities 过程:按照优先级大小对节点排序。

优先级由一系列键值对组成,键是该优先级项的名称,值是它的权重(该项的重要性)。有一系列的常见的优先级选项包括:
●LeastRequestedPriority:通过计算CPU和Memory的使用率来决定权重,使用率越低权重越高。也就是说,这个优先级指标倾向于资源使用比例更低的节点。
●BalancedResourceAllocation:节点上 CPU 和 Memory 使用率越接近,权重越高。这个一般和上面的一起使用,不单独使用。比如 node01 的 CPU 和 Memory 使用率 20:60,node02 的 CPU 和 Memory 使用率 50:50,虽然 node01 的总使用率比 node02 低,但 node02 的 CPU 和 Memory 使用率更接近,从而调度时会优选 node02。
●ImageLocalityPriority:倾向于已经有要使用镜像的节点,镜像总大小值越大,权重越高。

通过算法对所有的优先级项目和权重进行计算,得出最终的结果。
 

//指定调度节点:
●pod.spec.nodeName 将 Pod 直接调度到指定的 Node 节点上,会跳过 Scheduler 的调度策略,该匹配规则是强制匹配
vim myapp.yaml
apiVersion: apps/v1  
kind: Deployment  
metadata:
  name: myapp
spec:
  replicas: 3
  selector:
    matchLabels:
      app: myapp
  template:
    metadata:
      labels:
        app: myapp
    spec:
      nodeName: node01
      containers:
      - name: myapp
        image: soscscs/myapp:v1
        ports:
        - containerPort: 80
        
kubectl apply -f myapp.yaml

kubectl get pods -o wide
NAME                     READY   STATUS    RESTARTS   AGE   IP            NODE     NOMINATED NODE   READINESS GATES
myapp-6bc58d7775-6wlpp   1/1     Running   0          14s   10.244.1.25   node01   <none>           <none>
myapp-6bc58d7775-szcvp   1/1     Running   0          14s   10.244.1.26   node01   <none>           <none>
myapp-6bc58d7775-vnxlp   1/1     Running   0          14s   10.244.1.24   node01   <none>           <none>

//查看详细事件(发现未经过 scheduler 调度分配)
kubectl describe pod myapp-6bc58d7775-6wlpp
......
 Type    Reason   Age   From             Message
  ----    ------   ----  ----             -------
  Normal  Pulled   95s   kubelet, node01  Container image "soscscs/myapp:v1" already present on machine
  Normal  Created  99s   kubelet, node01  Created container nginx
  Normal  Started  99s   kubelet, node01  Started container nginx


●pod.spec.nodeSelector:通过 kubernetes 的 label-selector 机制选择节点,由调度器调度策略匹配 label,然后调度 Pod 到目标节点,该匹配规则属于强制约束
//获取标签帮助
kubectl label --help
Usage:
  kubectl label [--overwrite] (-f FILENAME | TYPE NAME) KEY_1=VAL_1 ... KEY_N=VAL_N [--resource-version=version] [options]

//需要获取 node 上的 NAME 名称
kubectl get node
NAME     STATUS   ROLES    AGE   VERSION
master   Ready    master   30h   v1.20.11
node01   Ready    <none>   30h   v1.20.11
node02   Ready    <none>   30h   v1.20.11

//给对应的 node 设置标签分别为 kgc=a 和 kgc=b
kubectl label nodes node01 kgc=a

kubectl label nodes node02 kgc=b

//查看标签
kubectl get nodes --show-labels
NAME     STATUS   ROLES    AGE   VERSION   LABELS
master   Ready    master   30h   v1.20.11   beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kubernetes.io/arch=amd64,kubernetes.io/hostname=master,kubernetes.io/os=linux,node-role.kubernetes.io/master=
node01   Ready    <none>   30h   v1.20.11   beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kgc=a,kubernetes.io/arch=amd64,kubernetes.io/hostname=node01,kubernetes.io/os=linux
node02   Ready    <none>   30h   v1.20.11   beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kgc=b,kubernetes.io/arch=amd64,kubernetes.io/hostname=node02,kubernetes.io/os=linux

//修改成 nodeSelector 调度方式
vim myapp1.yaml
apiVersion: apps/v1
kind: Deployment  
metadata:
  name: myapp1
spec:
  replicas: 3
  selector:
    matchLabels:
      app: myapp1
  template:
    metadata:
      labels:
        app: myapp1
    spec:
      nodeSelector:
        kgc: a
      containers:
      - name: myapp1
        image: soscscs/myapp:v1
        ports:
        - containerPort: 80


kubectl apply -f myapp1.yaml 

kubectl get pods -o wide
NAME                     READY   STATUS    RESTARTS   AGE   IP            NODE     NOMINATED NODE   READINESS GATES
myapp1-58cff4d75-52xm5   1/1     Running   0          24s   10.244.1.29   node01   <none>           <none>
myapp1-58cff4d75-f747q   1/1     Running   0          24s   10.244.1.27   node01   <none>           <none>
myapp1-58cff4d75-kn8gk   1/1     Running   0          24s   10.244.1.28   node01   <none>           <none>

//查看详细事件(通过事件可以发现要先经过 scheduler 调度分配)
kubectl describe pod myapp1-58cff4d75-52xm5
Events:
  Type    Reason     Age   From               Message
  ----    ------     ----  ----               -------
  Normal  Scheduled  57s   default-scheduler  Successfully assigned default/myapp1-58cff4d75-52xm5 to node01
  Normal  Pulled     57s   kubelet, node01    Container image "soscscs/myapp:v1" already present on machine
  Normal  Created    56s   kubelet, node01    Created container myapp1
  Normal  Started    56s   kubelet, node01    Started container myapp1


//修改一个 label 的值,需要加上 --overwrite 参数
kubectl label nodes node02 kgc=a --overwrite

//删除一个 label,只需在命令行最后指定 label 的 key 名并与一个减号相连即可:
kubectl label nodes node02 kgc-

//指定标签查询 node 节点
kubectl get node -l kgc=a

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/126760.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

注册中心ZK、nameServer、eureka、Nacos介绍与对比

前言 注册中心的由来 微服务架构是存在着很多跨服务调用,每个服务都存在着多个节点,如果有多个提供者和消费者,当提供者增加/减少或者消费者增加/减少,双方都需要感知发现。所以诞生了注册中心这个中间件。 市面上有很多注册中心,如 Zookeeper、NameServer、Eureka、Na…

log4j 日志的简单使用

文章底部有个人公众号&#xff1a;热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享&#xff1f; 踩过的坑没必要让别人在再踩&#xff0c;自己复盘也能加深记忆。利己利人、所谓双赢。 前言 System.out.println("这是我的测…

2023年云栖大会来啦!!(2022年就已经深受震撼)

2023云栖大会已经开始啦&#xff0c;让我们来回顾回顾去年的云栖大会吧。 云栖大会是中国阿里巴巴集团每年举办的一项技术盛会&#xff0c;前身可追溯到2009年的地方网站峰会&#xff0c;2011年演变为阿里云开发者大会&#xff0c;2015年正式更名为“云栖大会”&#xff0c;并且…

暴涨3倍!通过受感染 USB 窃密的事件愈发变多

2023 年上半年&#xff0c;Mandiant 观察到使用受感染 USB 驱动器窃取机密数据的事件至少增加了3倍。此前&#xff0c;Mandiant 披露了在菲律宾的一次攻击行动。本文将会介绍研究人员发现的两外两次基于 USB 驱动器的网络间谍行动。 CSDN大礼包&#xff1a;《黑客&网络安全…

【Verilog】7.2.1 Verilog 并行 FIR 滤波器设计

FIR&#xff08;Finite Impulse Response&#xff09;滤波器是一种有限长单位冲激响应滤波器&#xff0c;又称为非递归型滤波器。 FIR 滤波器具有严格的线性相频特性&#xff0c;同时其单位响应是有限长的&#xff0c;因而是稳定的系统&#xff0c;在数字通信、图像处理等领域…

nginx 转发数据流文件

1.问题描述 后端服务&#xff0c;从数据库中查询日志&#xff0c;并生成表格文件返回静态文件。当数据量几兆时&#xff0c;返回正常&#xff0c;但是超过几十兆&#xff0c;几百兆&#xff0c;就会超过网关的连接超时时间30秒。 时序图 这里面主要花费时间的地方在&#xff…

从零开始的目标检测和关键点检测(二):训练一个Glue的RTMDet模型

从零开始的目标检测和关键点检测&#xff08;二&#xff09;&#xff1a;训练一个Glue的RTMDet模型 一、config文件解读二、开始训练三、数据集分析四、ncnn部署 从零开始的目标检测和关键点检测&#xff08;一&#xff09;&#xff1a;用labelme标注数据集 从零开始的目标检测…

领先实践|IDEO 最佳设计思维和策略框架

设计思维是一种以人为本的创新方法&#xff0c;它从人类的角度出发&#xff0c;考虑技术上可行和经济上可行的内容。框架可以成为实现设计思维、策略和系统设计的有用工具。本文由此展开阐述 IDEO 的最佳设计思维和策略框架。 01. 设计思维框架 1.1 设计思维过程 设计思维?是…

python3 阿里云api进行巡检发送邮件

python3 脚本爬取阿里云进行巡检 不确定pip能不能安装上&#xff0c;使用时候可以百度一下&#xff0c;脚本是可以使用的&#xff0c;没有问题的 太长时间了&#xff0c;pip安装依赖忘记那些了&#xff0c;使用科大星火询问了下&#xff0c;给了下面的&#xff0c;看看能不能使…

X64(64位)汇编指令与机器码转换原理

X64&#xff08;64位&#xff09;汇编指令与机器码转换原理 1 64位寻址形式下的ModR/M字节1.1 寻址方式1.2 寄存器编号 2 汇编指令转机器码2.1 mov rcx, 1122334455667788h2.2 mov rcx,[r8]与mov [r8],rcx2.3 mov rcx,[r8r9*2] 本文属于《 X86指令基础系列教程》之一&#xff…

9.MySQL索引的操作

个人主页&#xff1a;Lei宝啊 愿所有美好如期而遇 目录 索引操作 查询索引 创建主键索引 唯一索引的创建 普通索引的创建 全文索引的创建 删除索引 索引创建原则 索引操作 查询索引 第一种方法&#xff1a; show keys from 表名\G 我们了解其中几个就好。 第二种方法…

双目视觉检测 KX02-SY1000型测宽仪 有效修正和消除距离变化对测量的影响

双目视觉检测的基本原理 利用相机测量宽度时&#xff0c;由于单个相机在成像时存在“近大远小”的现象&#xff0c;并且单靠摄入的图像无法知道被测物的距离&#xff0c;所以由被测物的跳动导致的被测物到工业相机之间距离变化&#xff0c;使测量精度难以提高。 因此测宽仪需…

项目综合实训,vrrp+bfd,以及策略路由的应用

目录 一&#xff0e; 项目需求 二&#xff0e; Visio设备画图 三&#xff0e; 设备选型 三&#xff0e;vlan规划 四&#xff0e;Ip地址规划 五&#xff0e;实验拓扑图 六&#xff0e;配置过程及结果 项目需求 1.S1作为VLAN10的主网关和根桥&#xff0c;S2作为v…

【C语法学习】5 - fputc()函数

文章目录 1 函数原型2 参数3 返回值4 示例4.1 示例14.2 示例24.3 示例3 1 函数原型 fputc()&#xff1a;将一个字符发送至指定流stream&#xff0c;函数原型如下&#xff1a; int fputc(int c, FILE *stream);2 参数 fputc()函数有两个参数c和stream&#xff1a; 参数c是待…

Servlet

Servlet是运行在服务端的小型Java程序&#xff0c;是sun公司提供一套规范&#xff0c;用来处理客户端请求&#xff0c;响应给浏览器的动态资源。但servlet的实质就是Java代码&#xff0c;通过Java的API动态的向客户端输出内容&#xff08;HTML&#xff09; 一、使用servlet2.5实…

量化交易Copula建模应对市场低迷

一、简介 传统上,我们依靠相关矩阵来理解资产间的动态。然而,正如过去的市场崩盘所表明的那样,当风暴袭来时,许多模型都会陷入混乱。突然之间,相关性似乎趋于一致,而多样化这一经常被吹捧的风险管理口号似乎并没有提供什么庇护。 这种出乎意料的同步,即资产在经济低迷时…

虹科分享 | 太赫兹成像技术透视分层结构助力文物研究

文章来源&#xff1a;虹科光电Hophotonix 阅读链接&#xff1a;虹科分享 | 太赫兹成像技术透视分层结构助力文物研究 对于时间分辨成像方法来说&#xff0c;分层结构的无创检测具有挑战性&#xff0c;其中分辨率和对比度可能会因层间反射和色散的突出信号衰减而受到影响。在一…

【Java 进阶篇】Java Response 输出字符数据案例

在Java Web开发中&#xff0c;使用HTTP响应对象&#xff08;Response&#xff09;来向客户端发送数据是一项非常重要的任务。本篇博客将详细介绍如何使用Java中的Response对象来输出字符数据&#xff0c;并提供示例代码以帮助读者更好地理解和应用这一概念。不仅将讨论基础知识…

Redis 原理缓存过期、一致性hash、雪崩、穿透、并发、布隆、缓存更新策略、缓存数据库一致性

redis过期策略 redis的过期策略可以通过配置文件进行配置 一、定期删除 redis会把设置了过期时间的key放在单独的字典中&#xff0c;定时遍历来删除到期的key。 1&#xff09;.每100ms从过期字典中 随机挑选20个&#xff0c;把其中过期的key删除&#xff1b; 2&#xff09;.…

MS3142电机驱动器可兼容LV8548M

MS3142/MS3142S 是一个双全桥电机驱动。可兼容LV8548M&#xff08;功能基本一致&#xff0c;管脚不兼容&#xff09;。电源电压供电范围 4V 到 18V&#xff0c;平均电流 1.1A&#xff0c;电流峰值 1.54A。如果需要更高的电流能力&#xff0c;可以将双全桥并联使用。 四个输入脚…