基于YOLOv8模型暗夜下人脸目标检测系统(PyTorch+Pyside6+YOLOv8模型)

摘要:基于YOLOv8模型暗夜下人脸目标检测系统可用于日常生活中检测与定位黑夜下人脸目标,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检测算法训练数据集,使用Pysdie6库来搭建前端页面展示系统。另外本系统支持的功能还包括训练模型的导入、初始化;检测置信分与检测后处理IOU阈值的调节;图像的上传、检测、可视化结果展示与检测结果导出;视频的上传、检测、可视化结果展示与检测结果导出;摄像头的图像输入、检测与可视化结果展示;已检测目标个数与列表、位置信息;前向推理用时等功能。本博文提供了完整的Python代码与安装和使用教程,适合新入门的朋友参考,部分重要代码部分都有注释,完整代码资源文件请转至文末的下载链接。
在这里插入图片描述

需要源码的朋友在后台私信博主获取下载链接

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv8 是 Ultralytics 公司继 YOLOv5 算法之后开发的下一代算法模型,目前支持图像分类、物体检测和实例分割任务。YOLOv8 是一个 SOTA模型,它建立在之前YOLO 系列模型的成功基础上,并引入了新的功能和改进,以进一步提升性能和灵活性。具体创新包括:一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行。因此本博文利用YOLOv8目标检测算法实现一种基于YOLOv8模型暗夜下人脸目标检测系统,再使用Pyside6库搭建出界面系统,完成目标检测页面的开发。本博主之前发布过关于YOLOv5算法的相关模型与界面,需要的朋友可从我之前发布的博客查看。另外本博主计划将YOLOv5、YOLOv6、YOLOv7和YOLOv8一起联合发布,需要的朋友可以持续关注,欢迎朋友们关注收藏。

环境搭建

(1)打开项目目录,在搜索框内输入cmd打开终端
在这里插入图片描述

(2)新建一个虚拟环境(conda create -n yolo8 python=3.8)
在这里插入图片描述

(3)激活环境,安装ultralytics库(yolov8官方库),pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(4)注意到这种安装方式只会安装cpu版torch,如需安装gpu版torch,需在安装包之前先安装torch:pip install torch2.0.1+cu118 torchvision0.15.2+cu118 -f https://download.pytorch.org/whl/torch_stable.html;再,pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(5)安装图形化界面库pyside6:pip install pyside6 -i https://pypi.tuna.tsinghua.edu.cn/simple

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。初始界面如下图:
在这里插入图片描述

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化的配置。
在这里插入图片描述

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图像进行检测与识别,上传成功后系统界面会同步显示输入图像。
在这里插入图片描述

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。
在这里插入图片描述

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
在这里插入图片描述

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

视频选择、检测与导出

用户点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面中显示。
在这里插入图片描述

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面中显示。
在这里插入图片描述

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv8,相较于之前的YOLO系列目标检测算法,YOLOv8目标检测算法具有如下的几点优势:(1)更友好的安装/运行方式;(2)速度更快、准确率更高;(3)新的backbone,将YOLOv5中的C3更换为C2F;(4)YOLO系列第一次尝试使用anchor-free;(5)新的损失函数。YOLOv8模型的整体结构如下图所示,原图见mmyolo的官方仓库。
在这里插入图片描述

YOLOv8与YOLOv5模型最明显的差异是使用C2F模块替换了原来的C3模块,两个模块的结构如下图所示,原图见mmyolo的官方仓库。
在这里插入图片描述

另外Head 部分变化最大,从原先的耦合头变成了解耦头,并且从 YOLOv5 的 Anchor-Based 变成了 Anchor-Free。其结构对比如下图所示。
在这里插入图片描述

数据集介绍

本系统使用的DarkFace人脸数据集手动标注了人脸这一个类别,数据集总计6000张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的DarkFace人脸检测识别数据集包含训练集4819张图片,验证集1181张图片,选取部分数据部分样本数据集如下图所示。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。
在这里插入图片描述

关键代码解析

在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。一个简单的单卡模型训练命令如下。
在这里插入图片描述

在训练时也可指定更多的参数,大部分重要的参数如下所示:在这里插入图片描述

在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv8算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、Pyside6等。
在这里插入图片描述

Pyside6界面设计

PySide是一个Python的图形化界面(GUI)库,由C++版的Qt开发而来,在用法上基本与C++版没有特别大的差异。相对于其他Python GUI库来说,PySide开发较快,功能更完善,而且文档支持更好。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的数据集进行训练,使用了YOLOv8算法对数据集训练,总计训练了100个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
在这里插入图片描述

下图展示了我们训练的YOLOv8模型在验证集上的PR曲线,从图中可以看出,模型取得了较高的召回率和精确率,整体表现良好。
在这里插入图片描述

下图展示了本博文在使用YOLOv8模型对数据集进行训练时候的Mosaic数据增强图像。
在这里插入图片描述

综上,本博文训练得到的YOLOv8模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。另外本博文的PDF与更多的目标检测识别系统请关注笔者的微信公众号 BestSongC。

其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、野生动物、野外烟雾、人体摔倒识别、红外行人、家禽猪、苹果、推土机、蜜蜂、打电话、鸽子、足球、奶牛、人脸口罩、安全背心、烟雾检测系统等有需要的朋友关注我,从博主其他视频中

完整项目目录如下所示
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/125891.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

搜索与图论:Prim

Prim算法求最小生成树: 每次将离连通部分的最近的点和点对应的边加入的连通部分&#xff0c;连通部分逐渐扩大&#xff0c;最后将整个图连通起来&#xff0c;并且边长之和最小。 #include <iostream> #include <cstring> #include <algorithm> using names…

一种支持热插拔的服务端插件设计思路

定位 服务端插件是一个逻辑扩展平台,提供了一个快速托管逻辑的能力。 核心特点 高性能:相对于RPC调用,没有网络的损耗,性能足够强劲。 高可靠:基于线程隔离,保证互不影响,插件的资源占用或崩溃等问题不直接影响业务。 部署快:不需要发布审核流程, 插件本身逻辑简短,…

【Overload游戏引擎细节分析】PBR材质Shader---完结篇

PBR基于物理的渲染可以实现更加真实的效果&#xff0c;其Shader值得分析一下。但PBR需要较多的基础知识&#xff0c;不适合不会OpenGL的朋友。 一、PBR理论 PBR指基于物理的渲染&#xff0c;其理论较多&#xff0c;需要的基础知识也较多&#xff0c;我在这就不再写一遍了&…

JVM虚拟机:如何调整堆空间的大小?

对内存的调优 如上所示,从物理角度来说呢,堆内存就是蓝色的区域,从逻辑角度来说,堆内存包含这个红色的部分,调优肯定是条物理的大小了,我们先来看一下物理内存的大小是多少? 如上所示,我们通过maxMemory获取到java虚拟机试图使用的最大内存量,默认为物理内存的1/4,比我…

SEO优化应该注意哪些细节?

SEO优化是一项细致的工作&#xff0c;需要关注细节&#xff0c;因为在很多情况下&#xff0c;被忽略的细节决定了优化的成败。俗话说&#xff1a;细节决定成败。 以下是我知道的一些小细节&#xff0c;希望能对一些新站长有所帮助。 1.内容非常重要。尝试使用原始或伪原始。原件…

where怎么等于多个值,sql where多个值

在SQL中&#xff0c;可以使用IN和OR操作符来匹配多个值&#xff0c;以在WHERE语句中执行过滤。以下是一些示例&#xff1a; 使用IN操作符匹配多个值 可以使用IN操作符来匹配多个可能的值&#xff0c;如下所示&#xff1a; SELECT * FROM 表名 WHERE 字段名 IN (值1, 值2, 值3…

Linux期末复习——多线程编程

线程概述 线程基本编程 函数说明 pthread_create(): 创建线程&#xff0c;成功返回0pthread_exit(): 主动退出线程&#xff0c;成功返回0pthread_join(): 挂起线程等待结束&#xff0c;成功返回0pthread_cancel在别的线程中终止另一个线程的执行&#xff0c;成功返回0 示例…

初识CSS层叠样式表

文章目录 CSS介绍CSS层叠样式表1.CSS组成2.CSS语法结构3.注释语法4.引入CSS的多种方式 CSS选择器1.CSS基础选择器2.CSS组成选择器3.分组与嵌套4.CSS属性选择器5.CSS伪类选择器6.CSS伪元素选择器 选择器优先级CSS继承选择器的优先级 CSS样式调节字体样式文本颜色文本属性 边框di…

在 Visual Studio 中远程调试 C++ 项目

目录 一、说明二、下载远程工具1. 官网下载2. 自己电脑上拷贝 三、 运行远程工具四、本机Visual Studio配置五、自动部署 一、说明 参考官方文档&#xff1a;https://learn.microsoft.com/zh-cn/visualstudio/debugger/remote-debugging-cpp?viewvs-2022 二、下载远程工具 …

数据库深入浅出,数据库介绍,SQL介绍,DDL、DML、DQL、TCL介绍

一、基础知识&#xff1a; 1.数据库基础知识 数据(Data)&#xff1a;文本信息(字母、数字、符号等)、音频、视频、图片等&#xff1b; 数据库(DataBase)&#xff1a;存储数据的仓库&#xff0c;本质文件&#xff0c;以文件的形式将数据保存到电脑磁盘中 数据库管理系统(DBMS)&…

clickhouse插入代替更新

1.使用ReplacingMergeTree引擎 CREATE TABLE xxx ( \ id_card String,\ session_id String,\ timestamp DateTime(Asia/Shanghai),\ realname String,\ phone_num String,\ email String ) \ ENGINE ReplacingMergeTree() \ PARTITION BY toY…

【小工具】WebClient远程调用,返回值将Long类型转换为String,自定义注解

文章目录 1. 使用WebClient使用远程调用2. 返回值将Long类型转换为String3. 自定义注解 1. 使用WebClient使用远程调用 <!-- SpringBoot webflux --> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter…

腾讯云轻量应用服务器的“镜像”操作系统选择方法

腾讯云轻量应用服务器镜像怎么选择&#xff1f;如果是用来搭建网站可以选择宝塔Linux面板腾讯云专享版&#xff0c;镜像系统根据实际使用来选择&#xff0c;腾讯云百科txybk.com来详细说下腾讯云轻量应用服务器镜像的选择方法&#xff1a; 腾讯云轻量应用服务器镜像选择 轻量…

BI零售数据分析,告别拖延症,及时掌握一线信息

在日常的零售数据分析中&#xff0c;经常会因为数据量太大&#xff0c;分析指标太多且计算组合多变而导致数据分析报表难产&#xff0c;零售运营决策被迫拖延症。随着BI数据可视化分析技术的发展&#xff0c;智能化、可视化、自助分析的BI数据分析逐渐成熟&#xff0c;形成一套…

嵌入式软件工程师面试题——2025校招社招通用(六)

说明&#xff1a; 面试题来源于网络书籍&#xff0c;公司题目以及博主原创或修改&#xff08;题目大部分来源于各种公司&#xff09;&#xff1b;文中很多题目&#xff0c;或许大家直接编译器写完&#xff0c;1分钟就出结果了。但在这里博主希望每一个题目&#xff0c;大家都要…

2、NLP文本预处理技术:词干提取和词形还原

一、说明 在上一篇文章中&#xff0c;我们解释了文本预处理的重要性&#xff0c;并解释了一些文本预处理技术。在本文中&#xff0c;我们将介绍词干提取和词形还原主题。 词干提取和词形还原是两种文本预处理技术&#xff0c;用于将单词还原为其基本形式或词根形式。这些技术的…

第03章_基本的SELECT语句

第03章_基本的SELECT语句 讲师&#xff1a;尚硅谷-宋红康&#xff08;江湖人称&#xff1a;康师傅&#xff09; 官网&#xff1a;http://www.atguigu.com 1. SQL概述 1.1 SQL背景知识 1946 年&#xff0c;世界上第一台电脑诞生&#xff0c;如今&#xff0c;借由这台电脑发展…

云计算是什么

一文读懂云计算&#xff1a;发展历程、概念技术与现状分析 - 知乎 “现阶段所说的云计算&#xff0c;已经不单单是一种分布式计算&#xff0c;而是分布式计算、效用计算、负载均衡、并行计算、网络存储、热备份冗杂和虚拟化等计算机技术混合演进并跃升的结果。” 云计算的关键…

oracle 重启步骤及踩坑经验

oracle 重启步骤及踩坑经验 标准重启步骤 切换到oracle用户 su - oracle关闭监听 lsnrctl stop杀掉oracle有关进程 ps -ef|grep $ORACLE_SID|grep -v ora_|grep LOCALNO|awk {print $2}|xargs kill -9#查询pid ps -ef|grep $ORACLE_SID|grep -v ora_|grep LOCALNO|awk {p…

恒驰服务 | 华为云数据使能专家服务offering之数仓建设

恒驰大数据服务主要针对客户在进行智能数据迁移的过程中&#xff0c;存在业务停机、数据丢失、迁移周期紧张、运维成本高等问题&#xff0c;通过为客户提供迁移调研、方案设计、迁移实施、迁移验收等服务内容&#xff0c;支撑客户实现快速稳定上云&#xff0c;有效降低时间成本…