redis如何实现持久化

RDB快照

RDB是一种快照存储持久化方式,具体就是将Redis某一时刻的内存数据保存到硬盘的文件当中,默认保存的文件名为dump.rdb,而在Redis服务器启动时,会重新加载dump.rdb文件的数据到内存当中恢复数据。

开启RDB持久化方式

开启RDB持久化方式很简单,客户端可以通过向Redis服务器发送save或bgsave命令让服务器生成rdb文件,或者通过服务器配置文件指定触发RDB条件。每次执行都会将所有redis内存快照到一个新的rdb文件里,并覆盖原有rdb快照文件。

方式一:save命令

在这里插入图片描述
在这里插入图片描述

当客户端向服务器发送save命令请求进行持久化时,服务器会阻塞save命令之后的其他客户端的请求,直到数据同步完成。 如果数据量太大,同步数据会执行很久,而这期间Redis服务器也无法接收其他请求,所以,最好不要在生产环境使用save命令。

方式二:bgsave命令

在这里插入图片描述

在这里插入图片描述

当客户端发服务发出bgsave命令时,Redis服务器主进程会forks一个子进程来解决数据同步问题,在将数据保存到rdb文件之后,子进程会退出。

所以,与save命令相比,Redis服务器在处理bgsave采用子线程进行IO写入,而主进程仍然可以接收其他请求,但forks子进程是同步的,所以forks子进程时,一样不能接收其他请求,这意味着,如果forks一个子进程花费的时间太久(一般是很快的),bgsave命令仍然有阻塞其他客户的请求的情况发生。

我们可以控制单个Redis实例的最大内存,来尽可能降低Redis在fork时的事件消耗。以及上面提到的自动触发的频率减少fork次数,或者使用手动触发,根据自己的机制来完成持久化。

方式三:通过配置文件自动触发

自动触发的场景主要是有以下几点:

1.根据我们的 save m n 配置规则自动触发;
2.从节点全量复制时,主节点发送rdb文件给从节点完成复制操作,主节点会触发 bgsave;
3.执行 debug reload 时;
4.执行shutdown时,如果没有开启aof,也会触发。

这里我们讲的是根据配置文件自动触发:

在这里插入图片描述

save和bgsave对比

在这里插入图片描述

RDB文件

前面介绍了三种让服务器生成rdb文件的方式,无论是由主进程生成还是子进程来生成,其过程如下:

生成临时rdb文件,并写入数据。

完成数据写入,用临时文件替代正式rdb文件。

删除原来的db文件。

COW写时复制(copy-on-write)

fork创建出的子进程,与父进程共享内存空间。也就是说,如果子进程不对内存空间进行写入操作的话(Redis的子进程只做数据落盘的操作,也不会去写数据),内存空间中的数据并不会复制给子进程,这样创建子进程的速度就很快了!(不用复制,直接引用父进程的物理空间,玩的是指针)

在这里插入图片描述
当Redis父进程修改数据时,父进程会将原先的数据复制一份生成新的副本,然后修改父进程的指针,指向新的数据,此时父进程修改的新的数据不会影响到子进程。此时子进程的指针仍然指向旧的数据,子进程看到的数据还是bgsave时候的数据。当下一次执行bgsave时,新fork出来的子进程指针才会指向这次新的数据。

在这里插入图片描述

AOF(append-only file)

与RDB存储某个时刻的快照不同,AOF持久化方式会记录客户端对服务器的每一次写操作命令,并将这些写操作以追加的方式保存到以后缀为aof文件中,在Redis服务器重启时,会加载并运行aof文件的命令,以达到恢复数据的目的。

开启AOF持久化的方式

方式一:bgrewriteaof命令

在这里插入图片描述

方式二:通过配置文件自动触发

Redis默认不开启AOF持久化方式,我们可以在配置文件中开启并进行更加详细的配置:

在这里插入图片描述

重写

AOF将客户端的每一个写操作都追加到aof文件末尾,比如对一个key多次执行incr命令,这时候,aof保存每一次命令到aof文件中,aof文件会变得非常大。

在这里插入图片描述

这是一种resp协议格式数据,星号后面的数字代表命令有多少个参数,$号后面的数字代表这个参数有几个字符

在这里插入图片描述

手动执行重写命令BGREWRITEAOF:
在这里插入图片描述

重写后AOF文件里如下,将多个incr命令进行了合并:

在这里插入图片描述

重写配置参数

AOF重写redis会fork出一个子进程去做(与bgsave命令类似),不会对redis正常命令处理有太多影响:

auto‐aof‐rewrite‐min‐size 64mb #aof文件至少要达到64M才会自动重写,文件太小恢复速度本来就 很快,重写的意义不大
auto‐aof‐rewrite‐percentage 100 #aof文件自上一次重写后文件大小增长了100%则再次触发重写,例如上一次重写的大小是64M,那么下一次达到128M再做重写

AOF重写流程图

在这里插入图片描述
在重写期间,由于主进程依然在响应命令,为了保证最终备份的完整性;因此它依然会写入旧的AOF file中,如果重写失败,能够保证数据不丢失。

为了把重写期间响应的写入信息也写入到新的文件中,因此也会为子进程保留一个buf,防止新写的file丢失数据。

重写是直接把当前内存的数据生成对应命令,并不需要读取老的AOF文件进行分析、命令合并。

不管是RDB还是AOF都是先写入一个临时文件,然后通过 rename 完成文件的替换工作。

混合持久化

重启 Redis 时,我们很少使用 RDB来恢复内存状态,因为会丢失大量数据。我们通常使用 AOF 日志重放,但是重放 AOF 日志性能相对 RDB来说要慢很多,这样在 Redis 实例很大的情况下,启动需要花费很长的时间。Redis 4.0 为了解决这个问题,带来了一个新的持久化选项——混合持久化。通过如下配置可以开启混合持久化(前提必须先开启aof):

aof‐use‐rdb‐preambleyes #开启混合持久化

如果开启了混合持久化,AOF在重写时,不再是单纯将内存数据转换为RESP命令写入AOF文件,而是将重写这一刻之前的内存做RDB快照处理,并且将RDB快照内容和增量的AOF修改内存数据的命令存在一起,都写入新的AOF文件,新的文件一开始不叫appendonly.aof,等到重写完新的AOF文件才会进行改名,覆盖原有的AOF文件,完成新旧两个AOF文件的替换。于是在 Redis 重启的时候,可以先加载 RDB 的内容,然后再重放增量 AOF 日志就可以完全替代之前的 AOF 全量文件重放,因此重启效率大幅得到提升。

127.0.0.1:6379> set k 1
OK
127.0.0.1:6379> set k 2
OK
127.0.0.1:6379> BGREWRITEAOF
Background append only file rewriting started

查看此时的appendonly.aof文件:此时存放的是RDB的内容

[root@redis 6379]# cat appendonly.aof
REDIS0009� redis-ver5.0.7�
�edis-bits�@�ctime�%y�_used-mem��aof-preamble���k� readcount�� R��i9$�[root@redis 6379]#

如果新增加了数据:

127.0.0.1:6379> set k 3
OK

那么新的数据会以为RESP命令的方式追加在后面:

[root@redis 6379]# cat appendonly.aof
REDIS0009� redis-ver5.0.7�
�edis-bits�@�ctime�%y�_used-mem��aof-preamble���k� readcount�� R��i9$�*2
$6
SELECT
$1
0
*3
$3
set
$1
k
$1
3

混合持久化AOF文件结构如下:
在这里插入图片描述

从持久化中恢复数据

数据的备份、持久化做完了,我们如何从这些持久化文件中恢复数据呢?如果一台服务器上有既有RDB文件,又有AOF文件,该加载谁呢?

其实想要从这些文件中恢复数据,只需要重新启动Redis即可。我们还是通过图来了解这个流程:
在这里插入图片描述

启动时会先检查AOF文件是否存在,如果不存在就尝试加载RDB。那么为什么会优先加载AOF呢?因为AOF保存的数据更完整,通过上面的分析我们知道AOF基本上最多损失1s的数据。

RDB和AOF对比:
在这里插入图片描述

另外RBD不支持拉链,只有一个dump.rdb文件

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/1250.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AWS MSK集群认证和加密传输的属性与配置

通常,身份认证和加密传输是两项不相关的安全配置,在Kafka/MSK上,身份认证和加密传输是有一些耦合关系的,重点是:对于MSK来说,当启用IAM, SASL/SCRAM以及TLS三种认证方式时,TLS加密传输是必须的&…

Ubuntu开机自启动设置

一、创建执行脚本 这里有两个程序所以编写了两个脚本,第一脚本(master.sh): gnome-terminal -- bash -c "source /home/zyy/anaconda3/bin/activate wood2;cd /home/zyy/pycharmProject/master_program;python main.py > /home/zyy/pycharmProj…

用于语义图像分割的弱监督和半监督学习:弱监督期望最大化方法

这时一篇2015年的论文,但是他却是最早提出在语义分割中使用弱监督和半监督的方法,SAM的火爆证明了弱监督和半监督的学习方法也可以用在分割上。 这篇论文只有图像级标签或边界框标签作为弱/半监督学习的输入。使用期望最大化(EM)方法,用于弱…

JavaScript--修改 HTML 元素

这些是一些用于修改 HTML 元素的常见方法&#xff1a; 1、document.createElement(element)&#xff1a;创建 HTML 元素节点。可以使用这个方法创建一个新的 HTML 元素&#xff0c; 例如 document.createElement(div) 将创建一个 <div> 元素节点。 2、document.createA…

elementUI 非表单格式的校验

在普通表单中对输入框、选择框都有校验案例。 但是在自定义非空中如何进行校验官网并没有说明 关键代码 clearValidate 方法清除校验 this.$refs.formValue.clearValidate(signinimg) 使用案例 <template><div class"stylebg"><Tabs icons"el-…

go mod 设置国内源 windows 环境 win10

启用 go module 功能 go env -w GO111MODULEon 配置 goproxy 变量 go env -w GOPROXYhttps://goproxy.cn,direct 下载包就行了&#xff0c;速度飞快 go mod tidy 检测 goproxy 是否配置好 运行 go env | findstr goproxy 查看 goproxy Go module 从 Go v1.12 版本开始存在&a…

flutter开发实战-底部bottomNavigationBar➕PageView

flutter开发实战-底部bottomNavigationBar tabbar在app中非常常见&#xff0c;底部BottomNavigationBar属性 一、BottomNavigationBar属性 BottomNavigationBar组件的常用属性&#xff1a; type&#xff1a;tabbar样式&#xff0c;默认为白色不显示&#xff1b;fixedColor:t…

S3C2440使用GPIO输入功能控制按键

文章目录 前言一、设置GPIO输入模式二、检测开关1.配置功能2.具体实现 总结 前言 由于上期分享的使用GPIO去控制引脚输出模式点亮LED&#xff0c;那么本期主要介绍一下使用GPIO设置为输入模式&#xff0c;用到的硬件有板载的按键&#xff1b;开发环境也是依赖于S3C2440开发板&…

TCP/IP网络编程 第十五章:套接字和标准I/O

标准I/O函数的优点 标准I/O函数的两个优点 将标准I/O函数用于数据通信并非难事。但仅掌握函数使用方法并没有太大意义&#xff0c;至少应该 了解这些函数具有的优点。下面列出的是标准I/O函数的两大优点: □标准I/O函数具有良好的移植性(Portability) □标准I/O函数可以利用缓…

【AI底层逻辑】——篇章3(下):信息交换信息加密解密信息中的噪声

续&#xff1a;【AI底层逻辑】——篇章3&#xff08;上&#xff09;&#xff1a;数据、信息与知识&香农信息论&信息熵 目录 三、信息是如何交换的 1、互联网与信息交换 2、哈夫曼和有效编码 四、信息的加密与解密 1、密码学的发展 2、可以被公开的密钥 五、信息…

python selenium.webdriver 爬取政策文件

文章目录 获取文章链接批量爬取政策文件应用selenium爬取文件信息数据处理导出为excel 获取文章链接 获取中央人民政府网站链接&#xff0c;进入国务院政策文件库&#xff0c;分为国务院文件和部门文件&#xff08;发改委、工信部、交通运输部、市场监督局、商务部等&#xff…

2023网络安全常见面试题汇总(附答案解析+配套资料)

以下为网络安全各个方向涉及的面试题&#xff0c;星数越多代表问题出现的几率越大&#xff0c;祝各位都能找到满意的工作。 注&#xff1a;所有的资料都整理成了PDF&#xff0c;面试题和答案将会持续更新&#xff0c;因为无论如何也不可能覆盖所有的面试题。 目录 一、渗透测试…

【Python】PyCharm中调用另一个文件的函数或类

&#x1f389;欢迎来到Python专栏~PyCharm中调用另一个文件的函数或类 ☆* o(≧▽≦)o *☆嗨~我是小夏与酒&#x1f379; ✨博客主页&#xff1a;小夏与酒的博客 &#x1f388;该系列文章专栏&#xff1a;Python学习专栏 文章作者技术和水平有限&#xff0c;如果文中出现错误&…

数据分析案例-数据分析师岗位招聘信息可视化

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…

LLM - Hugging Face 工程 BERT base model (uncased) 配置

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://blog.csdn.net/caroline_wendy/article/details/131400428 BERT是一个在大量英文数据上以自监督的方式预训练的变换器模型。这意味着它只是在原始文本上进行预训练&#xff0c;没有人以…

MySQL:聚合函数(全面详解)

聚合函数 前言一、聚合函数介绍1、AVG和SUM函数2、 MIN和MAX函数3、COUNT函数 二、GROUP BY1、基本使用2、使用多个列分组3、 GROUP BY中使用WITH ROLLUP 三、HAVING1、基本使用2、WHERE和HAVING的对比 四、 SELECT的执行过程1、查询的结构2、SELECT执行顺序3、SQL 的执行原理 …

积分图像、图像分割、Harris角点检测

目录 1、积分图像 2、图像分割--漫水填充 3、图像分割--分水岭法 4、Harris角点检测 1、积分图像 #include <iostream> #include <opencv2/opencv.hpp>using namespace cv; using namespace std;//积分图像 int test() {//创建一个1616全为1的矩阵,因为2561616M…

分类预测 | MATLAB实现基于Attention-GRU的数据多特征分类预测(门控循环单元融合注意力机制分类预测,含混淆矩阵图、分类图)

分类预测 | MATLAB实现基于Attention-GRU的数据多特征分类预测(门控循环单元融合注意力机制分类预测&#xff0c;含混淆矩阵图、分类图) 目录 分类预测 | MATLAB实现基于Attention-GRU的数据多特征分类预测(门控循环单元融合注意力机制分类预测&#xff0c;含混淆矩阵图、分类图…

Antd List组件增加gutter属性后出现横向滚动,如何解决

第一次使用ant design的List列表组件&#xff0c;设置gutter间隔属性后&#xff0c;页面出现了横向滚动条&#xff0c;查阅文档发现是由于加间隔后导致容器宽度被撑开&#xff0c;ant design官方默认给外层容器加了margin-left和margin-right 解决方法是在外层容器预留一定的pa…

用宏定义完成整数的二进制位的奇偶位互换

代码如下&#xff1a; #include <stdio.h> #define SWAP(num) (((num & 0xAAAAAAAA) >> 1) | ((num & 0x55555555) << 1))int main() {int num 1010;printf("%d\n", num);printf("%d\n", SWAP(num));return 0; }思路如下&…