【兔子王赠书第4期】用ChatGPT轻松玩转机器学习与深度学习

文章目录

  • 前言
  • 机器学习
  • 深度学习
  • ChatGPT
  • 推荐图书
  • 粉丝福利
  • 尾声

前言

兔子王免费赠书第4期来啦,突破传统学习束缚,借助ChatGPT的神奇力量,解锁AI无限可能!

机器学习

机器学习是人工智能领域的一个重要分支,它的目的是让计算机系统能够自动完成特定任务,而不需要人类专门为其编写指令。机器学习所涉及的技术和算法主要包括统计学、概率论、最优化理论、信息论等。在未来的人工智能时代,机器学习将成为重要的基础技术之一。

机器学习的基本概念

机器学习的核心思想是让计算机能够在数据的基础上自动学习并进行决策。为了达到这个目的,机器学习涉及到许多概念和技术。

  1. 数据集:机器学习的起点是数据。数据集是机器学习中的一个重要概念,它是由一组输入集合和对应的输出集合组成的。其中输入集合被称为样本特征,输出集合被称为标签。数据集的质量对机器学习的结果有着决定性的影响。
  2. 模型:模型是机器学习中的核心概念,它是用来处理数据的算法。模型可以是简单的数学公式,也可以是复杂的神经网络。机器学习的目的就是通过训练模型,使其能够从数据中学习到规律并进行新数据的预测或决策。
  3. 目标函数:目标函数是机器学习中非常重要的一个概念,它用来衡量模型的好坏。目标函数通常是一个数学公式,它将模型的预测结果与实际标签进行比较,并给出一个误差值。机器学习的目标是通过训练模型,使得目标函数的误差最小化。
  4. 训练:训练是机器学习的核心过程。通过训练过程,模型可以从数据中学习到规律并进行预测或决策。训练过程通常包括数据预处理、构建模型、设置目标函数、优化算法、模型评估等步骤。

例如简单的线性回归模型:

from sklearn.linear_model import LinearRegression
# 模型
model = LinearRegression()
# 训练
model.fit(X_train, y_train)
# 预测
predictions = model.predict(X_test)

机器学习的分类

机器学习可以分为监督学习、无监督学习和强化学习三种。

  1. 监督学习:监督学习是机器学习中最常见的一种方法,它的核心思想是从有标签的数据集中学习到规律,然后将这些规律应用到新的未标记数据上。 监督学习通常用于分类和回归问题,并且需要有标记的数据集来进行训练。
  2. 无监督学习:无监督学习是一种不需要标注数据的机器学习方法。其核心思想是从未标记的数据中学习到数据之间的相似度或聚类结构。无监督学习广泛应用于数据挖掘,图像处理和自然语言处理等领域。
  3. 强化学习:强化学习是一种通过观察环境和执行操作来学习最优策略的机器学习方法。在强化学习中,计算机通过试错的方式从环境中学习如何最好地执行任务。强化学习广泛应用于人工智能领域,如游戏AI和机器人控制。

机器学习的应用

机器学习已经成为众多领域的核心技术之一。以下是机器学习的一些应用领域:

  1. 金融:机器学习在金融领域的应用非常广泛,如风险评估、信用评估和投资决策等方面。
  2. 医疗:医疗领域是机器学习的重要应用领域之一,通过对医疗数据的分析和预测,可以帮助医生更好地进行诊断和治疗。
  3. 零售:机器学习在零售领域的应用范围非常广泛,如推荐系统、价格优化和营销策略等方面。
  4. 自然语言处理:自然语言处理是机器学习的另一个重要应用领域,包括机器翻译,语音识别和情感分析等。

总结

机器学习是一种数据驱动的计算机技术和算法,它的核心思想是让计算机能够自动学习,从而实现预测和决策等功能。机器学习有三种主要类型:监督学习、无监督学习和强化学习。机器学习已经广泛应用于各个领域,包括金融、医疗、零售和自然语言处理等。在未来的人工智能时代,机器学习将变得越来越重要。

深度学习

深度学习是机器学习的一种方法,其目的是让计算机模拟人类大脑的神经网络,从而实现自动化分析和决策。与传统机器学习方法相比,深度学习在处理大规模复杂数据时表现出更高的准确性和可靠性。深度学习已经成为了计算机视觉、自然语言处理、语音识别以及其他许多领域的基石。

深度学习的基本概念

深度学习的核心思想是建立多个神经网络层级结构,每一层可以自动提取数据的特征并传递给下一层。深度学习的模型通常由多个层级组成,其中一些层级被称为隐藏层,因为它们的内部运算不可见。

  1. 神经网络:神经网络是深度学习的核心组件之一,它由多个神经元组成,每个神经元接收来自其他神经元的输入,并产生输出。神经网络通常由多个层级组成,其中输入层接收原始数据,输出层生成结果,中间层则通过逐层学习和特征提取来实现数据的高效处理。
  2. 损失函数:损失函数用于评估深度学习模型的性能,它将模型的预测结果与真实标签进行比较,从而计算出模型的误差。深度学习的目标是通过训练模型,最小化损失函数的误差。
  3. 优化器:优化器是深度学习中用于优化模型参数的算法,其目标是通过调整模型参数来最小化损失函数的误差。优化器的常用算法包括梯度下降和随机梯度下降等。

例如简单的神经网络:

import tensorflow as tf
from tensorflow import keras# 构建模型
model = keras.Sequential([keras.layers.Flatten(input_shape=(28, 28)), # 将输入图像摊平为向量keras.layers.Dense(128, activation='relu'), # 全连接层,128个节点,激活函数为ReLUkeras.layers.Dense(10, activation='softmax') # 全连接层,输出10个节点,激活函数为Softmax,用于多分类
])# 编译模型
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])# 训练模型
model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels))# 评估模型
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print('\nTest accuracy:', test_acc)

深度学习的应用

深度学习在人工智能领域有着广泛的应用,以下是一些典型应用:

  1. 计算机视觉:深度学习在计算机视觉领域中的应用包括图像分类、目标检测、图像分割等。深度学习的优势在于其可以自动学习特征并对图像数据进行高效处理。
  2. 自然语言处理:深度学习在自然语言处理领域中的应用包括情感分析、文本分类、机器翻译等。深度学习的优势在于其可以自动学习语言特征,并对文本数据进行快速处理。
  3. 语音识别:深度学习在语音识别领域中的应用包括语音识别、说话人识别、语音合成等。深度学习的优势在于其可以自动学习语音特征,并对语音数据进行高效处理。

总结

深度学习是一种在机器学习领域中的创新方法,其核心思想是建立多层神经网络结构,可以用于自动学习和特征提取。深度学习在计算机视觉、自然语言处理、语音识别等领域有着广泛的应用前景。

ChatGPT

ChatGPT是一个基于人工智能的聊天机器人,它能够与人类用户进行自然语言对话。它是一个具有智能化的对话系统,可模拟人与人之间的对话,以自然的方式响应和理解人类的请求和问答。

ChatGPT是使用GPT(生成式预训练Transformer)算法开发的,该算法是由OpenAI公司开发的一种自然语言处理(NLP)技术。该算法可用于训练模型,使其能够理解和生成人类语言。

ChatGPT利用深度学习技术和大量的数据集进行训练,使其能够理解和处理自然语言。它具有良好的语言模型能力,能够自动学习语言规则和语法,并能够根据用户输入的文本自动生成具有连贯性的响应。

ChatGPT可以应用于多种领域,例如客户服务、在线商店、社交网络等。在客户服务方面,ChatGPT可以帮助客户解决问题、提供相关信息和建议。在在线商店方面,ChatGPT可以帮助用户浏览产品、提供推荐和解答问题。在社交网络方面,ChatGPT可以帮助用户进行交互式对话、提供娱乐和游戏等。

ChatGPT是一个极其高效的自然语言处理工具,其能够帮助用户处理大量的数据,并快速响应用户的需求。ChatGPT不断学习和进化,使其越来越智能化,更准确地理解用户的语言,并满足用户的需求。

推荐图书

《用ChatGPT轻松玩转机器学习与深度学习》

当当网链接:http://product.dangdang.com/29610425.html
京东的链接:https://item.jd.com/14092188.html

推荐图书

关键点

(1)利用ChatGPT,轻松理解机器学习和深度学习的概念和技术。
(2)提供实用经验和技巧,更好地掌握机器学习和深度学习的基本原理和方法。
(3)系统全面、易于理解,不需要过多的数学背景,只需掌握基本的编程知识即可上手。

内容简介

随着机器学习和深度学习技术的不断发展和进步,它们的复杂性也在不断增强。对于初学者来说,学习这两个领域可能会遇到许多难题和挑战,如理论知识的缺乏、数据处理的困难、算法选择的不确定性等。此时,ChatGPT可以提供强有力的帮助。利用ChatGPT,读者可以更轻松地理解机器学习和深度学习的概念和技术,并解决学习过程中遇到的各种问题和疑惑。此外,ChatGPT还可以为读者提供更多的实用经验和技巧,帮助他们更好地掌握机器学习和深度学习的基本原理和方法。本书主要内容包括探索性数据分析、有监督学习(线性回归、SVM、决策树等)、无监督学习(降维、聚类等),以及深度学习的基础原理和应用等。

本书旨在为广大读者提供一个系统全面、易于理解的机器学习和深度学习入门教程。不需要过多的数学背景,只需掌握基本的编程知识即可轻松上手。

作者简介

段小手,曾供职于百度、敦煌网、慧聪网、方正集团等知名IT企业。有多年的科技项目管理及开发经验。负责的项目曾获得“国家发改委电子商务示范项目”“中关村现代服务业试点项目”“北京市信息化基础设施提升专项”“北京市外贸公共服务平台”等多项政策支持。著有《深入浅出Python机器学习》《深入浅出Python量化交易实战》等著作,在与云南省公安厅合作期间,使用机器学习算法有效将某类案件发案率大幅降低。

推荐理由

《用ChatGPT轻松玩转机器学习与深度学习》是一本非常实用的机器学习与深度学习入门书籍。它主要介绍了机器学习和深度学习的基本概念、算法原理、实战案例等内容,并且使用了ChatGPT这一强大的自然语言处理技术来提升学习效果,使读者可以更加轻松地理解和掌握相关知识。

以下是这本书值得推荐的几个理由:

  1. 清晰易懂的讲解:这本书的语言简明易懂,避免了一些晦涩难懂的专业术语,适合初学者阅读。它通过生动的实例、图表和代码说明,帮助读者轻松理解机器学习和深度学习的基本原理。

  2. ChatGPT交互式学习:这本书使用了ChatGPT这一自然语言处理技术,可以通过和ChatGPT进行对话交互,来加深读者的理解和记忆。这种交互式学习方式很有趣,可以使学习过程变得更加轻松愉快。

  3. 实用的案例:这本书提供了大量的实用案例,包括图像识别、自然语言处理等领域的案例,可以帮助读者更好地理解机器学习和深度学习的应用。同时,这些案例也可以帮助读者掌握相关的编程技能。

  4. 完整的学习路径:这本书从机器学习基础开始逐步深入,一步步地引导读者学习深度学习相关知识。通过这种完整的学习路径,读者可以循序渐进地掌握机器学习和深度学习的知识。

总之,这本《用ChatGPT轻松玩转机器学习与深度学习》是一本非常优秀的机器学习和深度学习入门书籍。它通过清晰易懂的讲解、ChatGPT的交互式学习、实用的案例和完整的学习路径等方式,让读者可以轻松掌握这一领域的相关知识。

粉丝福利

  • 现在点赞收藏评论 “我用ChatGPT轻松玩转机器学习与深度学习!”
  • 评论区将随机抽取至多三名小伙伴免费赠书一本
  • 截止日期:2023年11月3日

尾声

感谢小伙伴们的支持吖~
我用ChatGPT轻松玩转机器学习与深度学习!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/124846.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

二叉树问题——前/中/后/层遍历(递归与栈)

摘要 博文主要介绍二叉树的前/中/后/层遍历(递归与栈)方法 一、前/中/后/层遍历问题 144. 二叉树的前序遍历 145. 二叉树的后序遍历 94. 二叉树的中序遍历 102. 二叉树的层序遍历 二、二叉树遍历递归解析 // 前序遍历递归LC144_二叉树的前序遍历 class Solution {publi…

2023年CCF中国开源大会“大模型时代的智能化软件工程新范式”分论坛成功举行...

2023年CCF中国开源大会“大模型时代的智能化软件工程新范式”分论坛于10月21日在湖南长沙成功举行。本次论坛聚焦大模型时代的智能化软件新生态以及相应的软件工程新范式,邀请了多位来自学术界和工业界的专家进行分享和交流,共设置了5个主题报告和1个Pan…

SpringBoot SerializationUtils克隆(反序列化) 类加载器不一致问题(ClassCastException)

问题分析 在SpringBoot中使用 org.apache.commons.lang.SerializationUtils.clone 方法时,发现克隆出来的类强转对应类时发生类型不一致的错误,经过检测发现两个看似相同的类的类加载器不一致 场景 报错信息 java.lang.ClassCastException: com.tianq…

OSEK OS介绍(一)

目录 1.OSEK OS架构 2.OSEK Task Management 2.1 Basic task: 2.2 Extended task 2.3 任务状态机 2.4 任务优先级 3.调度策略 3.1 完全抢占策略 3.2 非抢占式调度 3.3 混合式调度 4. Application Mode OSEK,汽车电子开放式系统及其接口&#…

KT6368A蓝牙芯片的4脚也就是蓝牙天线脚对地短路了呢?是不是坏了

一、问题简介 KT6368A芯片的4脚,也就是蓝牙天线脚,万用表测量对地短路了呢?是不是芯片坏掉了,能不能重新寄样品给我。 详细说明 首先,芯片没有坏,遇到自己不懂的地方,不要轻易的去怀疑。 而是…

基于计算机视觉的 Transformer 研究进展

论文地址: https://kns.cnki.net/kcms/detail/11.2127.tp.20211129.1135.004.html 18页,74篇参考文献 目录 摘 要 1 Transformer 基本原理 1.1 编码器-解码器 1.2 自注意力 1.3 多头注意力 2 在计算机视觉领域的应用 2.1 图像分类 2.1.1 iGPT …

无需更换vue-cli 脚手架 uniapp-搭建项目-H5-低版本安卓IOS兼容问题(白屏)(接口请求异常)

✨求关注~ 💻博客:www.protaos.com I. 简介 A. UniApp项目概述 B. 白屏和接口请求异常问题的背景 II. 白屏问题 A. 问题描述 1、uniapp 打包H5内嵌入APP内、低版本手机系统访问白屏问题 B. 问题根本原因 1、低版本手机系统 自带的webview内核不支持ES6语…

C++进阶语法——智能指针【学习笔记(五)】

文章目录 1、智能指针简介1.1 原始指针(raw pointer)的⼀些问题1.2 智能指针(smart pointers) 2、智能指针(smart pointers)——unique_ptr2.1 unique_ptr 的声明2.2 unique_ptr 的函数2.3 ⾃定义类型使⽤ …

0004net程序设计-抗疫物资

文章目录 **摘** **要**目 录系统设计开发环境 摘 要 近些年来,随着科技的飞速发展,互联网的普及逐渐延伸到各行各业中,给人们生活带来了十分的便利,抗疫物资管理系统利用计算机网络实现信息化管理,使整个抗疫物资管理…

Linux下GPIO和看门狗应用编程

文章目录 GPIO应用编程看门狗应用编程 GPIO应用编程 应用层操控硬件可以通过操作这些硬件的设备文件来进行,设备文件是各种硬件设备向应用层提供的一个接口,应用层通过对设备文件的I/O操作来操控硬件设备。设备文件通常在/dev/目录下,该目录…

Yolo-Z:改进的YOLOv5用于小目标检测

目录 一、前言 二、背景 三、新思路 四、实验分析 论文地址:2112.11798.pdf (arxiv.org) 一、前言 随着自动驾驶汽车和自动驾驶赛车越来越受欢迎,对更快、更准确的检测器的需求也在增加。 虽然我们的肉眼几乎可以立即提取上下文信息,即…

延迟队列实现方案总结

日常开发中,可能会遇到一些延迟处理的消息任务,例如以下场景 ①订单支付超时未支付 ②考试时间结束试卷自动提交 ③身份证或其他验证信息超时未提交等场景。 ④用户申请退款,一天内没有响应默认自动退款等等。 如何处理这类任务,最…

MAC缓解WebUI提示词反推

当前环境信息: 在mac上安装好stable diffusion后,能做图片生成了之后,遇到一些图片需要做提示词反推,这个时候需要下载一个插件,参考: https://gitcode.net/ranting8323/stable-diffusion-webui-wd14-tagg…

66 内网安全-域横向批量atschtasksimpacket

目录 演示案例:横向渗透明文传递at&schtasks 案例2-横向渗透明文HASH传递atexec-impacket案例3-横向渗透明文HASH传递批量利用-综合案例5-探针主机域控架构服务操作演示 传递攻击是建立在明文和hash值的一个获取基础上的攻击,也是在内网里面常见协议的攻击&…

一道简单的C#面试题

试题: 抽顺序问题:有10位面试者,需要随机抽号面试。 1)总共十个号数,用数组表示; 2)每一位面试者输入1开始抽签,然后得到抽签号,输入2结束抽签; 3&#x…

Linux玩物志:好玩却无用的软件探秘

W...Y的主页 😊 代码仓库分享💕 🍔前言: 我们已经学习了yum指令,可以在Linux中安装一些软件的指令。下面我们就盘点一些可玩性很高但是却没有什么用的软件,在枯燥的学习中增添一丝乐趣! For…

CSS宽度100%和宽度100vw之间有什么不同?

vw和vh分别代表视口宽度和视口高度。 使用width: 100vw代替的区别在于width: 100%,虽然100%将使元素适合所有可用空间,但视口宽度具有特定的度量,在这种情况下,可用屏幕的宽度 。 如果设置样式body { margin: 0 },则1…

2000-2021年上市公司产融结合度量数据

2000-2021年上市公司产融结合度量数据 1、时间:2000-2021年 2、指标:股票代码、年份、是否持有银行股份、持有银行股份比例、是否持有其他金融机构股份、产融结合 3、来源:上市公司年报 4、范围:上市公司 5、样本量&#xff…

gRPC源码剖析-Builder模式

一、Builder模式 1、定义 将一个复杂对象的构建与表示分离,使得同样的构建过程可以创建不同的的表示。 2、适用场景 当创建复杂对象的算法应独立于该对象的组成部分以及它们的装配方式时。 当构造过程必须允许被构造的对象有不同的表示时。 说人话&#xff1a…

java基础篇-环境变量

java基础 编程学习的关键点、重点1.环境变量设置待续 编程学习的关键点、重点 输入输出 Java语言、C语言、Python语言、甚至SQL语言,都需要实战、做大量输入输出等 1.环境变量设置 1.下载jdk安装 jdk官网下载直达链接:https://www.oracle.com/java/te…