mediapipe 训练自有图像数据分类

参考:
https://developers.google.com/mediapipe/solutions/customization/image_classifier
https://colab.research.google.com/github/googlesamples/mediapipe/blob/main/examples/customization/image_classifier.ipynb#scrollTo=plvO-YmcQn5g

安装:

pip install mediapipe-model-maker  -i http://mirrors.aliyun.com/pypi/simple --trusted-host mirrors.aliyun.com --use-pep517

版本错误情况

1)RuntimeError: File loading is not yet supported on Windows

其中mediapipe版本要大于等于0.10.0;下图中的要升级;不然后续用python 加载文件会报:

2)ImportError: cannot import name ‘array_record_module’ from ‘array_record.python’ ;参考:https://blog.csdn.net/LQ_001/article/details/130991571;原因:包依赖关系出现问题,原来版本 tensorflow-datasets==4.9.0

pip install tensorflow-datasets==4.8.3

在这里插入图片描述

在这里插入图片描述

1、训练代码

import os
import tensorflow as tf
assert tf.__version__.startswith('2')from mediapipe_model_maker import image_classifierimport matplotlib.pyplot as pltimage_path = os.path.join(os.path.dirname(r"C:\Users\loong\Downloads\mediapipe\flower_photos\flower_photos"), 'flower_photos')   ## down data  :https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz#Review datalabels = []
for i in os.listdir(image_path):if os.path.isdir(os.path.join(image_path, i)):labels.append(i)
print(labels)##plt 
NUM_EXAMPLES = 5for label in labels:label_dir = os.path.join(image_path, label)example_filenames = os.listdir(label_dir)[:NUM_EXAMPLES]fig, axs = plt.subplots(1, NUM_EXAMPLES, figsize=(10,2))for i in range(NUM_EXAMPLES):axs[i].imshow(plt.imread(os.path.join(label_dir, example_filenames[i])))axs[i].get_xaxis().set_visible(False)axs[i].get_yaxis().set_visible(False)fig.suptitle(f'Showing {NUM_EXAMPLES} examples for {label}')plt.show()

在这里插入图片描述

#Create dataset;训练集、测试集data = image_classifier.Dataset.from_folder(image_path)
train_data, remaining_data = data.split(0.8)
test_data, validation_data = remaining_data.split(0.5)## retrain model 训练模型spec = image_classifier.SupportedModels.MOBILENET_V2    ##有几个预训练模型,需要联网下载
hparams = image_classifier.HParams(export_dir="exported_model")  ##指定模型保存位置
options = image_classifier.ImageClassifierOptions(supported_model=spec, hparams=hparams)
model = image_classifier.ImageClassifier.create(train_data = train_data,validation_data = validation_data,options=options,
)## 验证模型
loss, acc = model.evaluate(test_data)
print(f'Test loss:{loss}, Test accuracy:{acc}')##保存模型
model.export_model()

在这里插入图片描述

在这里插入图片描述
默认训练是10epcos
在这里插入图片描述

查看训练tebsorboard:
注意ValueError: Duplicate plugins for name projector错误,参考https://blog.csdn.net/weixin_44966641/article/details/123292034;我这里是换了个conda环境重新安装个新的tensorflow解决

tensorboard --logdir=.

日志存放默认地址
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

##模型压缩
from mediapipe_model_maker import quantizationquantization_config = quantization.QuantizationConfig.for_int8(train_data)
model.export_model(model_name="model_int8.tflite", quantization_config=quantization_config)

从8M缩小到3M左右
在这里插入图片描述

2、加载推理

参考:https://blog.csdn.net/weixin_42357472/article/details/131322076

import mediapipe as mpBaseOptions = mp.tasks.BaseOptions
ImageClassifier = mp.tasks.vision.ImageClassifier
ImageClassifierOptions = mp.tasks.vision.ImageClassifierOptions
VisionRunningMode = mp.tasks.vision.RunningModeoptions = ImageClassifierOptions(base_options=BaseOptions(model_asset_path=r"C:\User**ediapipe\model.tflite"),max_results=5,running_mode=VisionRunningMode.IMAGE)   ##加载模型classifier = ImageClassifier.create_from_options(options)# Load the input image from an image file.
mp_image = mp.Image.create_from_file(r"C:\Users\loong\Downloads\sun2.jpg")# Perform image classification on the provided single image.
classification_result = classifier.classify(mp_image)
classification_result

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/124014.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CSS中的栅格布局

CSS中的栅格布局 在写前端项目的时候,我之前一直习惯使用flex布局,flex布局写起来比较随心,几乎可以实现任意形式的页面布局。不过自从B占看到某位大佬的grid布局后,发现布局居然还可以这么玩,正好自己在写一个vue3的…

【大数据Hive】hive 表数据优化使用详解

目录 一、前言 二、hive 常用数据存储格式 2.1 文件格式-TextFile 2.1.1 操作演示 2.2 文件格式 - SequenceFile 2.2.1 操作演示 2.3 文件格式 -Parquet 2.3.1 Parquet简介 2.3.2 操作演示 2.4 文件格式-ORC 2.4.1 ORC介绍 2.4.2 操作演示 三、hive 存储数据压缩优…

在线主动学习算法评估策略:prequential evaluation procedure

在线主动学习算法评估策略:prequential evaluation procedure 在在线主动学习领域(Online Active Learning),对在线主动学习算法的评估策略有多种方法,而现如今常用的方法是prequential evaluation procedure(出自论文《High density-focuse…

c++二叉树遍历

参考文献 数据结构c语言版&#xff0c;严蔚敏_吴伟民著。 二叉树 中序遍历代码实现 #include<vector> #include<iostream> using namespace std;//Definition for a binary tree node. struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode() : v…

腾讯云轻量应用镜像、系统镜像、Docker基础镜像、自定义镜像和共享镜像介绍

腾讯云轻量应用服务器镜像类型分为应用镜像、系统镜像、Docker基础镜像、自定义镜像和共享镜像&#xff0c;腾讯云百科txybk.com来详细说下不同镜像类型说明和详细介绍&#xff1a; 轻量应用服务器镜像类型说明 腾讯云轻量应用服务器 应用镜像&#xff1a;独有的应用镜像除了包…

Mysql设置了更新时间自动更新,指定更新部分sql时不进行时间更新

现象&#xff1a; 因为字段设置了自动更新&#xff0c;所以sql语句一进行修改此字段就会自动更新时间&#xff0c;但是呢我们的有部分定时任务是半夜执行&#xff0c;并且不能让这个任务修改到数据的更新时间 解决&#xff1a; <update id"updateCreative">ALT…

GoLand GC(垃圾回收机制)简介及调优

GC(Garbage Collector)垃圾回收机制及调优 简单理解GC机制 其实gc机制特别容易理解&#xff0c;就是物理内存的自动清理工。我们可以把内存想象成一个房间&#xff0c;程序运行时会在这个房间里存放各种东西&#xff0c;但有时候我们会忘记把不再需要的东西拿出去&#xff0c…

HubSpot CRM是什么?如何添加、使用呢?

HubSpot CRM是一款强大的客户关系管理工具&#xff0c;它不仅简化了销售和市场营销过程&#xff0c;还提供了多种功能&#xff0c;有助于增强客户互动、提高销售效率和提供更多的洞察信息。 今天运营坛将带领大家深入了解HubSpot CRM&#xff0c;涵盖了它的定义、使用流程、添…

基于STM32闭环步进电机控制系统设计

**单片机设计介绍&#xff0c;1654基于STM32闭环步进电机控制系统设计&#xff08;仿真&#xff0c;程序&#xff0c;说明&#xff09; 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序文档 六、 文章目录 一 概要 基于STM32的闭环步进电机控制系统设计是…

Java版 招投标系统简介 招投标系统源码 java招投标系统 招投标系统功能设计

功能描述 1、门户管理&#xff1a;所有用户可在门户页面查看所有的公告信息及相关的通知信息。主要板块包含&#xff1a;招标公告、非招标公告、系统通知、政策法规。 2、立项管理&#xff1a;企业用户可对需要采购的项目进行立项申请&#xff0c;并提交审批&#xff0c;查看所…

安卓逆向之雷电模拟器中控

一, 雷电模拟器 安装使用 官方地址: https://www.ldmnq.com ,官方论坛 https://www.ldmnq.com/forum/ . 有一个多开管理器,还有就是设置手机的参数比较关键。 二,雷电模拟器开启面具,安装LSP。 设置root 权限。

【数据结构实战项目】C语言实现数据结构顺序表万字详解(附完整运行代码)

&#x1f984;个人主页:修修修也 &#x1f38f;所属专栏:数据结构 ⚙️操作环境:Visual Studio 2022 一.了解项目功能 在本次项目中我们的目标是实现一个顺序表: 该顺序表使用动态内存分配,可以用来存储任意数量的同类型数据. 顺序表需要包含三个要素:存储数据的数组arr,顺序表…

Python程序设计期末复习笔记

文章目录 一、数据存储1.1 倒计时1.2 os库1.3 字符串操作1.4 文件操作1.5 列表操作1.6 元组1.7 字典 二、文本处理及可视化2.1 jieba分词2.2 集合操作2.3 pdf文件读取2.4 参数传递2.5 变量作用域 三、数据处理分析3.1 Sumpy3.2 Matplotlib3.3 Numpy 四、Pandas4.1 索引操作4.2 …

技术视角下的跑腿小程序开发:关键挑战和解决方案

跑腿小程序作为连接服务提供者和用户的桥梁&#xff0c;面临着诸多技术挑战。本文将聚焦于技术层面的关键挑战&#xff0c;并提供解决方案&#xff0c;以帮助开发者应对技术上的复杂问题。 1. 实时性与性能挑战 挑战&#xff1a; 跑腿小程序需要实时地匹配订单、更新状态和提…

40基于MATLAB,使用模板匹配法实现车牌的识别。

基于MATLAB&#xff0c;使用模板匹配法实现车牌的识别。具体包括将原图灰度化&#xff0c;边缘检测&#xff0c;腐蚀操作&#xff0c;车牌区域定位&#xff0c;车牌区域矫正&#xff0c;二值化&#xff0c;均值滤波&#xff0c;切割&#xff0c;字符匹配&#xff0c;最终显示车…

小程序request请求封装

以上为本人的项目目录 1.首先在utils中创建request.js文件封装request请求&#xff0c;此封装带上了token&#xff0c;每次请求都会自带token&#xff0c;需要你从后端获取后利用wx.setStorageSync(token,返回的token),不使用的话就是空。 直接复制即可&#xff0c;需要改一下…

(三)库存超卖案例实战——使用redis分布式锁解决“超卖”问题

前言 在上一节内容中我们介绍了如何使用mysql数据库的传统锁&#xff08;行锁、乐观锁、悲观锁&#xff09;来解决并发访问导致的“超卖问题”。虽然mysql的传统锁能够很好的解决并发访问的问题&#xff0c;但是从性能上来讲&#xff0c;mysql的表现似乎并不那么优秀&#xff…

vue3后台管理系统之跨域代理

vite.config.js中 server: {port: 5002,host: true, //0.0.0.0open: false,strictPort: true,proxy: {// 请求前缀/api&#xff0c;只有加了/api前缀的请求才会走代理(前端自定义)/api: {target: http://127.0.0.1:8000,// 获取服务器地址的设置changeOrigin: true,// 路径重写…

AMD HIP并行编程语言及其矢量相加实例——一文带你快速入门

✍️写在前面&#xff1a;随着计算的应用场景变得日益复杂多样&#xff0c;为了跟上人工智能算法对算力的需求&#xff0c;GPU硬件架构快速走向多样化&#xff0c;GPU生产厂家众多&#xff0c;且在商业和市场等因素的影响下&#xff0c;GPU通用计算编程模型也日益多元化。因此&…

Gateway一个诡异问题处理过程

一、前言 我们搭好了网关和一个基础微服务&#xff08;含用户体系、门店服务、商品服务、客户服务&#xff09;&#xff0c;然后用APIfox测试过程中发现通过网关入口请求某些接口&#xff0c;一段时间后返回错误&#xff0c;查看系统日志发现除了报There is no session with i…