Redis原理-IO模型和持久化

高性能IO模型

为什么单线程Redis能那么快

  • 一方面,Redis 的大部分操作在内存上完成,再加上它采用了高效的数据结构,例如哈希表和跳表,这是它实现高性能的一个重要原因。
  • 另一方面,就是 Redis 采用了多路复用机制,使其在网络 IO 操作中能并发处理大量的客户端请求,实现高吞吐率。

6.0 为啥采用多线程

Redis基本IO模型

在这里插入图片描述
在 socket 模型中,不同操作调用后会返回不同的套接字类型。socket() 方法会返回主动套接字,然后调用 listen() 方法,将主动套接字转化为监听套接字,此时,可以监听来自客户端的连接请求。最后,调用 accept() 方法接收到达的客户端连接,并返回已连接套接字。
针对监听套接字,我们可以设置非阻塞模式:当 Redis 调用 accept() 但一直未有连接请求到达时,Redis 线程可以返回处理其他操作,而不用一直等待。但是,你要注意的是,调用 accept() 时,已经存在监听套接字了。
虽然 Redis 线程可以不用继续等待,但是总得有机制继续在监听套接字上等待后续连接请求,并在有请求时通知 Redis;类似的,我们也可以针对已连接套接字设置非阻塞模式:Redis 调用 recv() 后,如果已连接套接字上一直没有数据到达,Redis 线程同样可以返回处理其他操作。我们也需要有机制继续监听该已连接套接字,并在有数据达到时通知 Redis;

这样才能保证 Redis 线程,既不会像基本 IO 模型中一直在阻塞点等待,也不会导致 Redis 无法处理实际到达的连接请求或数据

Linux 中的 IO 多路复用机制就要登场了。基于多路复用的高性能 I/O 模型

redis中日志

Redis 的持久化主要有两大机制,即 AOF(Append Only File)日志和 RDB 快照

AOF日志

在这里插入图片描述
较熟悉的是数据库的写前日志(Write Ahead Log, WAL),也就是说,在实际写数据前,先把修改的数据记到日志文件中,以便故障时进行恢复。不过,AOF 日志正好相反,它是写后日志,“写后”的意思是 Redis 是先执行命令,把数据写入内存,然后才记录日志,Redis 使用写后日志这一方式的一大好处是,可以避免出现记录错误命令的情况。除此之外,AOF 还有一个好处:它是在命令执行后才记录日志,所以不会阻塞当前的写操作。

AOF 也有两个潜在的风险。

  • 首先,如果刚执行完一个命令,还没有来得及记日志就宕机了,那么这个命令和相应的数据就有丢失的风险。
  • 其次,AOF 虽然避免了对当前命令的阻塞,但可能会给下一个操作带来阻塞风险。这是因为,AOF 日志也是在主线程中执行的,如果在把日志文件写入磁盘时,磁盘写压力大,就会导致写盘很慢,进而导致后续的操作也无法执行了。

三种写回策略

在这里插入图片描述

AOF 重写机制

AOF 是以文件的形式在记录接收到的所有写命令。随着接收的写命令越来越多,AOF 文件会越来越大。这也就意味着,我们一定要小心 AOF 文件过大带来的性能问题;

这里的“性能问题”,主要在于以下三个方面:一是,文件系统本身对文件大小有限制,无法保存过大的文件;二是,如果文件太大,之后再往里面追加命令记录的话,效率也会变低;三是,如果发生宕机,AOF 中记录的命令要一个个被重新执行,用于故障恢复,如果日志文件太大,整个恢复过程就会非常缓慢,这就会影响到 Redis 的正常使用。

AOF 重写机制就是在重写时,Redis 根据数据库的现状创建一个新的 AOF 文件,也就是说,读取数据库中的所有键值对,然后对每一个键值对用一条命令记录它的写入。比如说,当读取了键值对“testkey”: “testvalue”之后,重写机制会记录 set testkey testvalue 这条命令。这样,当需要恢复时,可以重新执行该命令,实现“testkey”: “testvalue”的写入。

AOF 重写会阻塞吗

和 AOF 日志由主线程写回不同,重写过程是由后台子进程 bgrewriteaof 来完成的,这也是为了避免阻塞主线程,导致数据库性能下降。
一个拷贝”就是指,每次执行重写时,主线程 fork 出后台的 bgrewriteaof 子进程。此时,fork 会把主线程的内存拷贝一份给 bgrewriteaof 子进程,这里面就包含了数据库的最新数据。然后,bgrewriteaof 子进程就可以在不影响主线程的情况下,逐一把拷贝的数据写成操作,记入重写日志。

这样,重写日志也不会丢失最新的操作。等到拷贝数据的所有操作记录重写完成后,重写日志记录的这些最新操作也会写入新的 AOF 文件,以保证数据库最新状态的记录。此时,我们就可以用新的 AOF 文件替代旧文件了。

但是,在“用日志”的过程中,也就是使用 AOF 进行故障恢复时,我们仍然需要把所有的操作记录都运行一遍。再加上 Redis 的单线程设计,这些命令操作只能一条一条按顺序执行,这个“重放”的过程就会很慢了。
那么,有没有既能避免数据丢失,又能更快地恢复的方法呢?当然有,那就是 RDB 快照了。下节课,我们就一起学习一下,敬请期待。

内存快照RDB:宕机后,Redis如何实现快速恢复

内存快照。所谓内存快照,就是指内存中的数据在某一个时刻的状态记录。这就类似于照片,当你给朋友拍照时,一张照片就能把朋友一瞬间的形象完全记下来。

和 AOF 相比,RDB 记录的是某一时刻的数据,并不是操作,所以,在做数据恢复时,我们可以直接把 RDB 文件读入内存,很快地完成恢复。听起来好像很不错,但内存快照也并不是最优选项

给哪些内存数据做快照

在这里插入图片描述

针对任何操作,我们都会提一个灵魂之问:“它会阻塞主线程吗?”RDB 文件的生成是否会阻塞主线程,这就关系到是否会降低 Redis 的性能

save:在主线程中执行,会导致阻塞;bgsave:创建一个子进程,专门用于写入 RDB 文件,避免了主线程的阻塞,这也是 Redis RDB 文件生成的默认配置。我们就可以通过 bgsave 命令来执行全量快照,这既提供了数据的可靠性保证,也避免了对 Redis 的性能影响。

这个问题非常重要,这是因为,如果数据能被修改,那就意味着 Redis 还能正常处理写操作。否则,所有写操作都得等到快照完了才能执行,性能一下子就降低了

写时复制技术(Copy-On-Write, COW)

避免阻塞和正常处理写操作并不是一回事。此时,主线程的确没有阻塞,可以正常接收请求,但是,为了保证快照完整性,它只能处理读操作,因为不能修改正在执行快照的数据。为了快照而暂停写操作,肯定是不能接受的。所以这个时候,Redis 就会借助操作系统提供的写时复制技术(Copy-On-Write, COW),在执行快照的同时,正常处理写操作。简单来说,bgsave 子进程是由主线程 fork 生成的,可以共享主线程的所有内存数据。bgsave 子进程运行后,开始读取主线程的内存数据,并把它们写入 RDB 文件。此时,如果主线程对这些数据也都是读操作(例如图中的键值对 A),那么,主线程和 bgsave 子进程相互不影响。但是,如果主线程要修改一块数据(例如图中的键值对 C),那么,这块数据就会被复制一份,生成该数据的副本。然后,bgsave 子进程会把这个副本数据写入 RDB 文件,而在这个过程中,主线程仍然可以直接修改原来的数据。

可以每秒做一次快照吗

增量快照

我们可以做增量快照,所谓增量快照,就是指,做了一次全量快照后,后续的快照只对修改的数据进行快照记录,这样可以避免每次全量快照的开销。

在第一次做完全量快照后,T1 和 T2 时刻如果再做快照,我们只需要将被修改的数据写入快照文件就行。但是,这么做的前提是,我们需要记住哪些数据被修改了。你可不要小瞧这个“记住”功能,它需要我们使用额外的元数据信息去记录哪些数据被修改了,这会带来额外的空间开销问题。

Redis 4.0 中提出了一个混合使用 AOF 日志和内存快照的方法。简单来说,内存快照以一定的频率执行,在两次快照之间,使用 AOF 日志记录这期间的所有命令操作。这样一来,快照不用很频繁地执行,这就避免了频繁 fork 对主线程的影响。而且,AOF 日志也只用记录两次快照间的操作,也就是说,不需要记录所有操作了,因此,就不会出现文件过大的情况了,也可以避免重写开销。

关于 AOF 和 RDB 的选择问三点建议:

  • 数据不能丢失时,内存快照和 AOF 的混合使用是一个很好的选择;
  • 如果允许分钟级别的数据丢失,可以只使用 RDB;
  • 如果只用 AOF,优先使用 everysec 的配置选项,因为它在可靠性和性能之间取了一个平衡。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/123480.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HTML简单实现v-if与v-for与v-model

Vue启动!! 首先VIewModel将View和Model连接一起,Model的数据改变View的数据也变 使用Visual Studio Code 启动Vue需要vue.js插件和导入CDN(包) vue.js插件:CTRL shift x 在搜索栏搜 索vue.js安装即可 CDN: http…

orb-slam3编译手册(Ubuntu20.04)

orb-slam3编译手册(Ubuntu20.04) 一、环境要求1.安装git2.安装g3.安装CMake4.安装vi编辑器 二、源代码下载三、依赖库下载1.Eigen安装2.Pangolin安装3.opencv安装4.安装Python & libssl-dev5.安装boost库 三、安装orb-slam3四、数据集下载及测试 写在…

k8s集群升级

目录 1. 部署cri-docker (所有集群节点) 2. 升级master节点 3. 升级worker节点 4. 部署containerd 1. 部署cri-docker (所有集群节点) k8s从1.24版本开始移除了dockershim,所以需要安装cri-docker插件才能使用docker …

MySQL6:索引使用原则,联合索引,联合主键/复合主键,覆盖索引、什么是回表?索引条件下推,索引的创建与使用,索引的创建与使用,索引失效

MySQL6:索引使用原则,联合索引,联合主键/复合主键,覆盖索引、什么是回表?索引条件下推,索引的创建与使用,索引的创建与使用,索引失效 索引使用原则列的离散(sdn)度 联合索引创建联合…

Harbor私有镜像仓库搭建

本文基于:https://zhuanlan.zhihu.com/p/143779176 1.环境准备 IP:192.168.10.136/24 操作系统:centos7 2.安装Docker、Docker-compose 2.1安装Docker-CE $ wget https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo -O /etc/yum.re…

数据库简史:多主数据库架构的由来和华为参天引擎的机遇

注:本文发表后,收到了很多后台反馈,其中关于大型机的早期成就不容省略。微调重发本文,纯属个人观点,错谬之处,仍然期待指正。 2023年10月13日,在北京举办的“2023金融业数据库技术大会"上&…

redis6.0源码分析:跳表skiplist

文章目录 前言什么是跳表跳表(redis实现)的空间复杂度相关定义 跳表(redis实现)相关操作创建跳表插入节点查找节点删除节点 前言 太长不看版 跳跃表是有序集合zset的底层实现之一, 除此之外它在 Redis 中没有其他应用。…

电力巡检/电力抢修行业解决方案:AI+视频技术助力解决巡检监管难题

一、行业背景 随着国民经济的蓬勃发展,工业用电和居民用电需求迅速增加,电厂、变电站、输电线路高负荷运转,一旦某个节点发生故障,对生产、生活造成巨大的影响。目前电力行业生产现场人员、设备较多,而生产监督员有限…

基于vue小红书平台用户数据分析与可视化

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性:…

【马蹄集】—— 搜索专题

搜索专题 目录 MT2238 数的增殖MT2239 二维矩阵中的最长下降序列MT2240 传染病MT2241 循环空间BD202303 第五维度 MT2238 数的增殖 难度&#xff1a;黄金    时间限制&#xff1a;1秒    占用内存&#xff1a;128M 题目描述 给定一个数 n ( n < 1000 ) n (n<1000) n…

Java I/O (输入/输出)

1.流的概念 流是一种有序的数据序列&#xff0c;根据操作类型&#xff0c;可以分为输入流和输出流两种。I/O流&#xff08;输入输出&#xff09;提供了一条通道程序&#xff0c;可以使用这条通道把源中的字节序列送到目的地。 1.1 输入流&#xff1a; 程序从指向源的输入流中读…

51单片机汽车胎压大气气压测量仪仿真设计_数码管显示(代码+仿真+设计报告+讲解)

51单片机汽车胎压大气气压测量仪仿真设计_数码管显示 (代码仿真设计报告讲解) 仿真原版本&#xff1a;proteus 7.8 程序编译器&#xff1a;keil 4/keil 5 编程语言&#xff1a;C语言 设计编号&#xff1a;S0018 目录 51单片机汽车胎压大气气压测量仪仿真设计_数码管显示功…

技术分享| anyRTC低延时直播优化

直播系统就是把活动现场的音频或视频信号经数字压缩后&#xff0c;传送到直播多媒体服务器(CDN)上&#xff0c;在互联网上供广大网友或授权特定人群收听或收看。而随着技术的日益更新&#xff0c;人民对于直播的互动性&#xff0c;实时性要求更高了&#xff0c;传统的直播少则几…

React-表单受控绑定和获取Dom元素

一、表单受控组件 1.声明一个react状态 说明&#xff1a;useState const [value,setValue]useState("") 2.核心绑定流程 2.1绑定react状态 <div><input value{value}type"text"></input> 2.2绑定onChange事件 说明&#xff1a;e.…

队列(Queue)概念+通过单、双链表来模拟队列+环形队列+OJ面试题(用队列实现栈、用栈实现队列、设计环形队列)

文章目录 队列(Queue)一、 概念1.尾进头出 二、模拟队列1.单链表实现队列1.1 设置结点1.2 入队offer1.3出队 poll1.4 empty方法&#xff0c;peek方法&#xff0c;getUsedSize方法 2.双链表实现队列2.1 创建结点2.2 入队列2.3 出队列2.4 peek、size、isEmpty方法 三、环形队列1.…

vivo自研AI大模型即将问世,智能手机行业加速迈向AI时代

当前&#xff0c;以大模型为代表的人工智能技术已发展为新一轮科技革命和产业变革的重要驱动力量&#xff0c;被视作推动经济社会发展的关键增长极。 AI大模型潮起&#xff0c;千行百业走向百舸争流的AI创新应用期&#xff0c;前沿信息技术向手机、PC、车机等消费级终端加速渗…

AJAX原理及介绍

文章目录 AJAX&#xff08;Asynchronous Javascript And Xml&#xff09;传统请求及缺点AJAX概述XMLHttpRequest对象AJAX GET请求AJAX GET请求的缓存问题AJAX POST请求基于JSON的数据交换基于XML的数据交换AJAX乱码问题AJAX的异步与同步AJAX代码封装AJAX实现省市联动AJAX跨域问…

[Unity][VR]透视开发系列3-Passthrough应用的真机测试方法

【视频讲解】 视频讲解地址请关注我的B站。 专栏后期会有一些不公开的高阶实战内容或是更细节的指导内容。 B站地址: https://www.bilibili.com/video/BV1Zg4y1w7fZ/ 我还有一些免费和收费课程在网易云课堂(大徐VR课堂): https://study.163.com/provider/480000002282025/…

nodejs+vue食力派网上订餐系统-计算机毕业设计

采用当前流行的B/S模式以及3层架构的设计思想通过 技术来开发此系统的目的是建立一个配合网络环境的食力派网上订餐系统&#xff0c;这样可以有效地解决食力派网上订餐管理信息混乱的局面。 本设计旨在提高顾客就餐效率、优化餐厅管理、提高订单准确性和客户的满意度。本系统采…

Android问题笔记四十三:JNI 开发如何快速定位崩溃问题

点击跳转>Unity3D特效百例点击跳转>案例项目实战源码点击跳转>游戏脚本-辅助自动化点击跳转>Android控件全解手册点击跳转>Scratch编程案例点击跳转>软考全系列 &#x1f449;关于作者 专注于Android/Unity和各种游戏开发技巧&#xff0c;以及各种资源分享&…