欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。
文章目录
- 一项目简介
- 二、功能
- 三、基于yolov8的安全帽检测系统
- 四. 总结
一项目简介
在企业作业和工地施工过程中,安全永远高于一切。众所周知,工人在进入工作现场必须佩戴安全帽,传统的检查方法主要靠安全检查人员人工查看,这种方法既耗时又费力却无法保证效果。本课题针对这一问题,基于深度学习,提出了一种安全帽佩戴识别方法。
基于深度学习算法,以PaddlePaddle深度学习框架作为实验环境,选取了开源的安全帽识别数据库和实地拍摄的安全帽佩戴照片,使用样本扩增增加了实验数据集的样本数,选取了Faster R-CNN、SSD与YOLO v8三种深度神经网络模型,构建出安全帽智能识别模型。
在实验数据集上对三种模型分别实验,对比实验结果。结果显示,基于YOLOv8的模型具有识别精度高,识别速率快等特点,识别准确率达到了99.97%。为了验证了本文提出方法的有效性,使用Python语言开发了安全帽佩戴识别的原型系统。
关键词:深度学习;安全帽识别;Python;YOLO v8
能够检测工地工人是否佩戴安全帽并发出警报,可统计计数,可报警提示,可定制yolov7,yolov8版本,可网络优化
二、功能
安全帽识别 基于yolov8的工人佩戴安全帽识别yolov8安全帽检测算法,视频检测和图像检测,可以识别图片与视频,系统可以将识别到的物体进行统计计数并展示在前端页面中
有UI界面,可提供训练数据集,检测精度高
目标检测算法,深度学习,图像处理
界面UI优美,包含训练好的权重文件
环境:Python3.10、torch2.0、Pycharm
三、基于yolov8的安全帽检测系统
四. 总结
本课题针对企业作业和工地施工过程佩戴安全帽的自动识别问题,基于深度学习,提出了一种安全帽佩戴识别方法。该方法基于深度学习算法,以PaddlePaddle深度学习框架作为实验环境,选取了开源的安全帽识别数据库和实地拍摄的安全帽佩戴照片,使用样本扩增增加了实验数据集的样本数,选取了Faster R-CNN、SSD与YOLO v8三种深度神经网络模型,构建出安全帽智能识别模型。在实验数据集上对三种模型分别实验,对比实验结果。结果显示,基于YOLOv8的模型具有识别精度高,识别速率快等特点,识别准确率达到了99.97%。为了验证了本文提出方法
的有效性,使用Python语言开发了安全帽佩戴识别的原型系统。