RabbitMQ原理(五):消费者的可靠性

文章目录

  • 3.消费者的可靠性
    • 3.1.消费者确认机制
    • 3.2.失败重试机制
    • 3.3.失败处理策略
    • 3.4.业务幂等性
      • 3.4.1.唯一消息ID
      • 3.4.2.业务判断
    • 3.5.兜底方案

3.消费者的可靠性

当RabbitMQ向消费者投递消息以后,需要知道消费者的处理状态如何。因为消息投递给消费者并不代表就一定被正确消费了,可能出现的故障有很多,比如:

  • 消息投递的过程中出现了网络故障
  • 消费者接收到消息后突然宕机
  • 消费者接收到消息后,因处理不当导致异常

一旦发生上述情况,消息也会丢失。因此,RabbitMQ必须知道消费者的处理状态,一旦消息处理失败才能重新投递消息。
但问题来了:RabbitMQ如何得知消费者的处理状态呢?

本章我们就一起研究一下消费者处理消息时的可靠性解决方案。

3.1.消费者确认机制

为了确认消费者是否成功处理消息,RabbitMQ提供了消费者确认机制(Consumer Acknowledgement)。即:当消费者处理消息结束后,应该向RabbitMQ发送一个回执,告知RabbitMQ自己消息处理状态。回执有三种可选值:

  • ack:成功处理消息,RabbitMQ从队列中删除该消息
  • nack:消息处理失败,RabbitMQ需要再次投递消息
  • reject:消息处理失败并拒绝该消息,RabbitMQ从队列中删除该消息

一般reject方式用的较少,除非是消息格式有问题,那就是开发问题了。因此大多数情况下我们需要将消息处理的代码通过try catch机制捕获,消息处理成功时返回ack,处理失败时返回nack.

由于消息回执的处理代码比较统一,因此SpringAMQP帮我们实现了消息确认。并允许我们通过配置文件设置ACK处理方式,有三种模式:

  • **none**:不处理。即消息投递给消费者后立刻ack,消息会立刻从MQ删除。非常不安全,不建议使用
  • **manual**:手动模式。需要自己在业务代码中调用api,发送ackreject,存在业务入侵,但更灵活
  • **auto**:自动模式。SpringAMQP利用AOP对我们的消息处理逻辑做了环绕增强,当业务正常执行时则自动返回ack. 当业务出现异常时,根据异常判断返回不同结果:
    • 如果是业务异常,会自动返回nack
    • 如果是消息处理或校验异常,自动返回reject;

返回Reject的常见异常有:

Starting with version 1.3.2, the default ErrorHandler is now a ConditionalRejectingErrorHandler that rejects (and does not requeue) messages that fail with an irrecoverable error. Specifically, it rejects messages that fail with the following errors:

  • o.s.amqp…MessageConversionException: Can be thrown when converting the incoming message payload using a MessageConverter.
  • o.s.messaging…MessageConversionException: Can be thrown by the conversion service if additional conversion is required when mapping to a @RabbitListener method.
  • o.s.messaging…MethodArgumentNotValidException: Can be thrown if validation (for example, @Valid) is used in the listener and the validation fails.
  • o.s.messaging…MethodArgumentTypeMismatchException: Can be thrown if the inbound message was converted to a type that is not correct for the target method. For example, the parameter is declared as Message but Message is received.
  • java.lang.NoSuchMethodException: Added in version 1.6.3.
  • java.lang.ClassCastException: Added in version 1.6.3.

通过下面的配置可以修改SpringAMQP的ACK处理方式:

spring:rabbitmq:listener:simple:acknowledge-mode: none # 不做处理

修改consumer服务的SpringRabbitListener类中的方法,模拟一个消息处理的异常:

@RabbitListener(queues = "simple.queue")
public void listenSimpleQueueMessage(String msg) throws InterruptedException {log.info("spring 消费者接收到消息:【" + msg + "】");if (true) {throw new MessageConversionException("故意的");}log.info("消息处理完成");
}

测试可以发现:当消息处理发生异常时,消息依然被RabbitMQ删除了。

我们再次把确认机制修改为auto:

spring:rabbitmq:listener:simple:acknowledge-mode: auto # 自动ack

在异常位置打断点,再次发送消息,程序卡在断点时,可以发现此时消息状态为unacked(未确定状态):
image.png
放行以后,由于抛出的是消息转换异常,因此Spring会自动返回reject,所以消息依然会被删除:
image.png

我们将异常改为RuntimeException类型:

@RabbitListener(queues = "simple.queue")
public void listenSimpleQueueMessage(String msg) throws InterruptedException {log.info("spring 消费者接收到消息:【" + msg + "】");if (true) {throw new RuntimeException("故意的");}log.info("消息处理完成");
}

在异常位置打断点,然后再次发送消息测试,程序卡在断点时,可以发现此时消息状态为unacked(未确定状态):
image.png放行以后,由于抛出的是业务异常,所以Spring返回ack,最终消息恢复至Ready状态,并且没有被RabbitMQ删除:
image.png
当我们把配置改为auto时,消息处理失败后,会回到RabbitMQ,并重新投递到消费者。

3.2.失败重试机制

当消费者出现异常后,消息会不断requeue(重入队)到队列,再重新发送给消费者。如果消费者再次执行依然出错,消息会再次requeue到队列,再次投递,直到消息处理成功为止。
极端情况就是消费者一直无法执行成功,那么消息requeue就会无限循环,导致mq的消息处理飙升,带来不必要的压力:
image.png

当然,上述极端情况发生的概率还是非常低的,不过不怕一万就怕万一。为了应对上述情况Spring又提供了消费者失败重试机制:在消费者出现异常时利用本地重试,而不是无限制的requeue到mq队列。

修改consumer服务的application.yml文件,添加内容:

spring:rabbitmq:listener:simple:retry:enabled: true # 开启消费者失败重试initial-interval: 1000ms # 初识的失败等待时长为1秒multiplier: 1 # 失败的等待时长倍数,下次等待时长 = multiplier * last-intervalmax-attempts: 3 # 最大重试次数stateless: true # true无状态;false有状态。如果业务中包含事务,这里改为false

重启consumer服务,重复之前的测试。可以发现:

  • 消费者在失败后消息没有重新回到MQ无限重新投递,而是在本地重试了3次
  • 本地重试3次以后,抛出了AmqpRejectAndDontRequeueException异常。查看RabbitMQ控制台,发现消息被删除了,说明最后SpringAMQP返回的是reject

结论:

  • 开启本地重试时,消息处理过程中抛出异常,不会requeue到队列,而是在消费者本地重试
  • 重试达到最大次数后,Spring会返回reject,消息会被丢弃

3.3.失败处理策略

在之前的测试中,本地测试达到最大重试次数后,消息会被丢弃。这在某些对于消息可靠性要求较高的业务场景下,显然不太合适了。
因此Spring允许我们自定义重试次数耗尽后的消息处理策略,这个策略是由MessageRecovery接口来定义的,它有3个不同实现:

  • RejectAndDontRequeueRecoverer:重试耗尽后,直接reject,丢弃消息。默认就是这种方式
  • ImmediateRequeueMessageRecoverer:重试耗尽后,返回nack,消息重新入队
  • RepublishMessageRecoverer:重试耗尽后,将失败消息投递到指定的交换机

比较优雅的一种处理方案是RepublishMessageRecoverer,失败后将消息投递到一个指定的,专门存放异常消息的队列,后续由人工集中处理。

1)在consumer服务中定义处理失败消息的交换机和队列

@Bean
public DirectExchange errorMessageExchange(){return new DirectExchange("error.direct");
}
@Bean
public Queue errorQueue(){return new Queue("error.queue", true);
}
@Bean
public Binding errorBinding(Queue errorQueue, DirectExchange errorMessageExchange){return BindingBuilder.bind(errorQueue).to(errorMessageExchange).with("error");
}

2)定义一个RepublishMessageRecoverer,关联队列和交换机

@Bean
public MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");
}

完整代码如下:

package com.itheima.consumer.config;import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.DirectExchange;
import org.springframework.amqp.core.Queue;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.amqp.rabbit.retry.MessageRecoverer;
import org.springframework.amqp.rabbit.retry.RepublishMessageRecoverer;
import org.springframework.context.annotation.Bean;@Configuration
@ConditionalOnProperty(name = "spring.rabbitmq.listener.simple.retry.enabled", havingValue = "true")
public class ErrorMessageConfig {@Beanpublic DirectExchange errorMessageExchange(){return new DirectExchange("error.direct");}@Beanpublic Queue errorQueue(){return new Queue("error.queue", true);}@Beanpublic Binding errorBinding(Queue errorQueue, DirectExchange errorMessageExchange){return BindingBuilder.bind(errorQueue).to(errorMessageExchange).with("error");}@Beanpublic MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");}
}

3.4.业务幂等性

何为幂等性?
幂等是一个数学概念,用函数表达式来描述是这样的:f(x) = f(f(x)),例如求绝对值函数。
在程序开发中,则是指同一个业务,执行一次或多次对业务状态的影响是一致的。例如:

  • 根据id删除数据
  • 查询数据
  • 新增数据

但数据的更新往往不是幂等的,如果重复执行可能造成不一样的后果。比如:

  • 取消订单,恢复库存的业务。如果多次恢复就会出现库存重复增加的情况
  • 退款业务。重复退款对商家而言会有经济损失。

所以,我们要尽可能避免业务被重复执行。
然而在实际业务场景中,由于意外经常会出现业务被重复执行的情况,例如:

  • 页面卡顿时频繁刷新导致表单重复提交
  • 服务间调用的重试
  • MQ消息的重复投递

我们在用户支付成功后会发送MQ消息到交易服务,修改订单状态为已支付,就可能出现消息重复投递的情况。如果消费者不做判断,很有可能导致消息被消费多次,出现业务故障。
举例:

  1. 假如用户刚刚支付完成,并且投递消息到交易服务,交易服务更改订单为已支付状态。
  2. 由于某种原因,例如网络故障导致生产者没有得到确认,隔了一段时间后重新投递给交易服务。
  3. 但是,在新投递的消息被消费之前,用户选择了退款,将订单状态改为了已退款状态。
  4. 退款完成后,新投递的消息才被消费,那么订单状态会被再次改为已支付。业务异常。

因此,我们必须想办法保证消息处理的幂等性。这里给出两种方案:

  • 唯一消息ID
  • 业务状态判断

3.4.1.唯一消息ID

这个思路非常简单:

  1. 每一条消息都生成一个唯一的id,与消息一起投递给消费者。
  2. 消费者接收到消息后处理自己的业务,业务处理成功后将消息ID保存到数据库
  3. 如果下次又收到相同消息,去数据库查询判断是否存在,存在则为重复消息放弃处理。

我们该如何给消息添加唯一ID呢?
其实很简单,SpringAMQP的MessageConverter自带了MessageID的功能,我们只要开启这个功能即可。
以Jackson的消息转换器为例:

@Bean
public MessageConverter messageConverter(){// 1.定义消息转换器Jackson2JsonMessageConverter jjmc = new Jackson2JsonMessageConverter();// 2.配置自动创建消息id,用于识别不同消息,也可以在业务中基于ID判断是否是重复消息jjmc.setCreateMessageIds(true);return jjmc;
}

3.4.2.业务判断

业务判断就是基于业务本身的逻辑或状态来判断是否是重复的请求或消息,不同的业务场景判断的思路也不一样。
例如我们当前案例中,处理消息的业务逻辑是把订单状态从未支付修改为已支付。因此我们就可以在执行业务时判断订单状态是否是未支付,如果不是则证明订单已经被处理过,无需重复处理。

相比较而言,消息ID的方案需要改造原有的数据库,所以我更推荐使用业务判断的方案。

以支付修改订单的业务为例,我们需要修改OrderServiceImpl中的markOrderPaySuccess方法:

    @Overridepublic void markOrderPaySuccess(Long orderId) {// 1.查询订单Order old = getById(orderId);// 2.判断订单状态if (old == null || old.getStatus() != 1) {// 订单不存在或者订单状态不是1,放弃处理return;}// 3.尝试更新订单Order order = new Order();order.setId(orderId);order.setStatus(2);order.setPayTime(LocalDateTime.now());updateById(order);}

上述代码逻辑上符合了幂等判断的需求,但是由于判断和更新是两步动作,因此在极小概率下可能存在线程安全问题。

我们可以合并上述操作为这样:

@Override
public void markOrderPaySuccess(Long orderId) {// UPDATE `order` SET status = ? , pay_time = ? WHERE id = ? AND status = 1lambdaUpdate().set(Order::getStatus, 2).set(Order::getPayTime, LocalDateTime.now()).eq(Order::getId, orderId).eq(Order::getStatus, 1).update();
}

注意看,上述代码等同于这样的SQL语句:

UPDATE `order` SET status = ? , pay_time = ? WHERE id = ? AND status = 1

我们在where条件中除了判断id以外,还加上了status必须为1的条件。如果条件不符(说明订单已支付),则SQL匹配不到数据,根本不会执行。

3.5.兜底方案

虽然我们利用各种机制尽可能增加了消息的可靠性,但也不好说能保证消息100%的可靠。万一真的MQ通知失败该怎么办呢?
有没有其它兜底方案,能够确保订单的支付状态一致呢?

其实思想很简单:既然MQ通知不一定发送到交易服务,那么交易服务就必须自己主动去查询支付状态。这样即便支付服务的MQ通知失败,我们依然能通过主动查询来保证订单状态的一致。
流程如下:

图中黄色线圈起来的部分就是MQ通知失败后的兜底处理方案,由交易服务自己主动去查询支付状态。

不过需要注意的是,交易服务并不知道用户会在什么时候支付,如果查询的时机不正确(比如查询的时候用户正在支付中),可能查询到的支付状态也不正确。
那么问题来了,我们到底该在什么时间主动查询支付状态呢?

这个时间是无法确定的,因此,通常我们采取的措施就是利用定时任务定期查询,例如每隔20秒就查询一次,并判断支付状态。如果发现订单已经支付,则立刻更新订单状态为已支付即可。
定时任务大家之前学习过,具体的实现这里就不再赘述了。

至此,消息可靠性的问题已经解决了。

综上,支付服务与交易服务之间的订单状态一致性是如何保证的?

  • 首先,支付服务会正在用户支付成功以后利用MQ消息通知交易服务,完成订单状态同步。
  • 其次,为了保证MQ消息的可靠性,我们采用了生产者确认机制、消费者确认、消费者失败重试等策略,确保消息投递的可靠性
  • 最后,我们还在交易服务设置了定时任务,定期查询订单支付状态。这样即便MQ通知失败,还可以利用定时任务作为兜底方案,确保订单支付状态的最终一致性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/117430.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unsupervised Medical Image Translation with Adversarial Diffusion Models

基于对抗扩散模型的无监督医学图像翻译 论文链接:https://arxiv.org/abs/2207.08208 项目链接:https://github.com/icon-lab/SynDiff Abstract 通过源-目标模态转换对缺失图像进行补全可以提高医学成像方案的多样性。利用生成对抗网络(GAN)进行一次映…

Leetcode—104.二叉树的最大深度【简单】

2023每日刷题(六) Leetcode—104.二叉树的最大深度 递归实现代码 /*** Definition for a binary tree node.* struct TreeNode {* int val;* struct TreeNode *left;* struct TreeNode *right;* };*/int maxDepth(struct TreeNode* root){…

分类预测 | MATLAB实现SSA-CNN-GRU-Attention数据分类预测(SE注意力机制)

分类预测 | MATLAB实现SSA-CNN-GRU-Attention数据分类预测(SE注意力机制) 目录 分类预测 | MATLAB实现SSA-CNN-GRU-Attention数据分类预测(SE注意力机制)分类效果基本描述模型描述程序设计参考资料 分类效果 基本描述 1.MATLAB实现…

C#,数值计算——分类与推理Phylo_upgma的计算方法与源程序

1 文本格式 using System; using System.Collections.Generic; namespace Legalsoft.Truffer { public class Phylo_upgma : Phylagglom { public override void premin(double[,] d, int[] nextp) { } public override double dminfn(doubl…

structs2 重构成SpringBoot架构

# 目录 structs2 重构成SpringBoot架构 1.1 structs2架构: 1.2 springboot 架构 1.3 演化要点: 1.基于前端的展示层不需要修改 2.HttpServlet 将会有SpringBoot annotation 来处理 3.构建前置的Structs url 转发器,适配 4.ActionSupport将由…

C#开发的OpenRA游戏之金钱系统(5)

C#开发的OpenRA游戏之金钱系统(5) 前面分析了采矿车到矿场采矿的过程,那么采矿车什么时候采满呢?采满之后又是怎么样运送到精炼工厂呢? 首先我们来分析采矿车是怎么样判断采满矿产的,毕竟采矿车不能无限装载矿产资源。所以我们再次回到采矿车类Harvester,来分析它怎么…

上海亚商投顾:沪指放量反弹 两市超4500股飘红

上海亚商投顾前言:无惧大盘涨跌,解密龙虎榜资金,跟踪一线游资和机构资金动向,识别短期热点和强势个股。 一.市场情绪 三大指数昨日集体反弹,深成指、创业板指盘中涨超1%,黄白二线大幅分化,题材…

【SwiftUI模块】0060、SwiftUI基于Firebase搭建一个类似InstagramApp 3/7部分-搭建TabBar

SwiftUI模块系列 - 已更新60篇 SwiftUI项目 - 已更新5个项目 往期Demo源码下载 技术:SwiftUI、SwiftUI4.0、Instagram、Firebase 运行环境: SwiftUI4.0 Xcode14 MacOS12.6 iPhone Simulator iPhone 14 Pro Max SwiftUI基于Firebase搭建一个类似InstagramApp 3/7部分-搭建Tab…

Mybatis-Plus CRUD

💗wei_shuo的个人主页 💫wei_shuo的学习社区 🌐Hello World ! Mybatis-Plus CRUD 通用 Service CRUD 封装 IService 接口,进一步封装 CRUD 采用 get 查询、remove 删除 、list 查询集合、page 分页的前缀命名方式区分 …

AlDente Pro for Mac: 掌控电池充电的终极解决方案

你是否曾经为了保护你的MacBook的电池,而苦恼于无法控制它的充电速度?AlDente Pro for Mac 是一款专为Mac用户设计的电池管理工具,它能帮助你解决这个问题。 AlDente Pro for Mac 是一款电池最大充电限制软件,它能够让你自由地设…

系统安全分析与设计

系统安全分析与设计(2分) 内容提要 对称加密与非对称加密 加密技术与认证技术 加密技术(只能防止第三方窃听) 讲解地址:对称加密与非对称加密_哔哩哔哩_bilibili 认证技术 骚戴理解:数字签名是用私钥签名…

【Airflow】构建爬虫任务系统

爬虫脚本太多了需要进行管理一下,领导决定使用airflow 我了解了一下这个平台是用来做任务调度。 是一个ETL工具 ETL是将业务系统的数据经过抽取、清洗转换之后加载到数据仓库的过程 这里是一个github的地址 https://github.com/apache/airflow 这里是官方文档 http…

[100天算法】-最长有效括号(day 38)

题目描述 给定一个只包含 ( 和 ) 的字符串,找出最长的包含有效括号的子串的长度。示例 1:输入: "(()" 输出: 2 解释: 最长有效括号子串为 "()" 示例 2:输入: ")()())" 输出: 4 解释: 最长有效括号子串为 "()()"来源&#…

Day07 Stream流递归Map集合Collections可变参数

Stream 也叫Stream流,是Jdk8开始新增的一套API (java.util.stream.*),可以用于操作集合或者数组的数据。 Stream流大量的结合了Lambda的语法风格来编程,提供了一种更加强大,更加简单的方式操作 public class Demo1 {public stati…

面试算法40:矩阵中的最大矩形

题目 请在一个由0、1组成的矩阵中找出最大的只包含1的矩形并输出它的面积。例如,在图6.6的矩阵中,最大的只包含1的矩阵如阴影部分所示,它的面积是6。 分析 直方图是由排列在同一基线上的相邻柱子组成的图形。由于题目要求矩形中只包含数字…

SpringCloud微服务 【实用篇】| 认识微服务

目录 一:认识微服务 1. 微服务框架介绍 2. 服务架构演变 3. 微服务技术对比 4. SpringCloud 图书推荐:《巧用ChatGPT快速提高职场晋升力》 一:认识微服务 本课程学习于黑马,会通过分层次学习,分为三部分去讲解微…

数据与视图的完美契合:Vue响应式的交织魅力

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…

springboo单机多线程高并发防止重复消费的redis方案

springboo单机多线程高并发防止重复消费的redis方案 仅提供方案与测试。 想法:第一次收到userCode时,检查是否在redis中有,如果有,就表明已经消费了,返回抢单失败;否则,就去消费,顺…

从REST到GraphQL:升级你的Apollo体验

前言 「作者主页」:雪碧有白泡泡 「个人网站」:雪碧的个人网站 「推荐专栏」: ★java一站式服务 ★ ★ React从入门到精通★ ★前端炫酷代码分享 ★ ★ 从0到英雄,vue成神之路★ ★ uniapp-从构建到提升★ ★ 从0到英雄&#xff…

Qt之实现支持多选的QCombobox

一.效果 1.点击下拉列表的复选框区域 2.点击下拉列表的非复选框区域 二.实现 QHCustomComboBox.h #ifndef QHCUSTOMCOMBOBOX_H #define QHCUSTOMCOMBOBOX_H#include <QLineEdit> #include <QListWidget> #include <QCheckBox> #include <QComboBox>…