向量检索库Milvus架构及数据处理流程

文章目录

    • 背景
    • milvus想做的事
    • milvus之前——向量检索的一些基础
      • 近似算法
        • 欧式距离
        • 余弦距离
      • 常见向量索引
        • 1) FLAT
        • 2) Hash based
        • 3) Tree based
        • 4) 基于聚类的倒排
        • 5) NSW(Navigable Small World)图
      • 向量数据库对比
    • milvus架构
      • milvus的四大角色和十一组件
        • 四大角色
        • 十一组件
      • milvus的数据模型
        • milvus属性和关系数据库类比
        • shard、partition和segment
          • virtual channel VS physical channel
          • segment
        • 数据存储
          • minio中数据存储
          • 文件内部内容
          • milvus一些限制
      • 数据流向
        • Create Collection
        • Flush Collection
        • Insert Data
        • Create Index
        • Search
      • knowhere
    • Milvus如何解决单机架构的一些问题
      • 水平扩容
      • 数据丢失
      • 数据一致性
      • 效果
    • helm安装部署及升级
      • 开源chart
      • prometheus+grafana监控

背景

搜索或推荐场景,需要将非结构化的物料(媒资)结构化,也即提取特征,然后将特征存储向量数据库,从而实现海量数据快速检索功能。

当前,开源市场比较火的搜索引擎有Faiss,但Faiss更类似于es的lucene,需要上层解决分布式水平扩容、数据一致性、高可用等问题。所以对于数据量大,要求高可用等架构场景,使用milvus。
在这里插入图片描述

milvus想做的事

Lucene——Faiss
Milvus——Elasticsearch
专注向量检索框架,解决数据一致性,分布式水平扩容等问题

设计思想:

  1. CAP中选择去牺牲一定的一致性,来实现可用性和 Latency
  2. 日志即数据,流批一体

做一个数据库,而不是引擎。如何做管理、计费、可视化,数据迁移。数据库不仅要提供传统的增删改查能力,还提供数据转换、迁移、多租户加密管理、计费、限流、可视化、备份快找等更加多样的服务

  • 做数据分片
  • 如何保证数据的高可靠性
  • 如何保证分布式系统有节点出现异常时如何恢复
  • 如何在一个大规模集群中实现负载均衡
  • 如何查询语句
  • 如何做 Parse 和 Optimize
  • 系统做持久化存储,需要考量不同的数据存储格式

milvus之前——向量检索的一些基础

近似算法

欧式距离

各个点的具体坐标数值对结果会有比较大的影响。在推荐系统场景下,欧式距离一般用于需要从维度的数值大小中体现差异的相关度分析
例如以登陆次数和平均观看时长作为特征时,余弦相似度会认为(1,10)、(10,100)两个用户距离很近,但显然这两个用户的活跃度是有着很大差异的,(10,100)这个用户的价值更高,此时我们更关注数值绝对差异,应当使用欧氏距离

余弦距离

跟欧式距离的差别主要在于它对具体数值的差异并不敏感。一句话总结就是,虽然数值上确实有差异,但是两者的x,y轴相对应的数值的分值之差保持相近,所以两者的相似度还是很高。余弦相似度更倾向于衡量两者在方向趋势上的差异,余弦相似度更多的适用于使用用户对内容评分来区分兴趣的相似度和差异

在这里插入图片描述

常见向量索引

1) FLAT

也就是大家常说的暴力搜索,这种方式是典型的牺牲性能和成本换取准确性,是唯一可以实现 100% 召回率的方式,同时可以较好地使用显卡等异构硬件加速。

2) Hash based

基于 locality sensitive hashing 将数据分到不同的哈希桶中。这种方式实现简单,性能较高,但是召回率不够理想。

3) Tree based

代表是 KDTree 或者 BallTree,通过将高维空间进行分割,并在检索时通过剪枝来减少搜索的数据量,这种方式性能不高,尤其是在维度较高时性能不理想。

4) 基于聚类的倒排

通过 k-means 算法找到数据的一组中心点,并在查询时利用查询向量和中心点距离选择部分桶进行查询。倒排这一类又拥有很多的变种,比如可以通过 PCA 将数据进行降维,进行标量量化,或者通过乘积量化 PQ 将数据降精度,这些都有助于减少系统的内存使用和单次数据计算量。

5) NSW(Navigable Small World)图

是一种基于图存储的数据结构,这种索引基于一种朴素的假设,通过在构建图连接相邻的友点,然后在查询时不断寻找距离更近的节点实现局部最优。在 NSW 的基础上,HNSW(Navigable Small World)图借鉴了跳表的机制,通过层状结构构建了快速通道,提升了查询效率。
hnsw参考:https://www.pinecone.io/learn/series/faiss/hnsw/

k-means动态算法:
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
dbscan动态算法:
https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

向量数据库对比

相比较其他向量数据库,Milvus:

  • 支持的索引类型较多
  • 代码开源,社区比较活跃,生态良好(工具)
  • GO语言实现,性能高
  • 流批一体的设计模式,很好的解决了数据一致性、高可用等问题
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述在这里插入图片描述

https://zhuanlan.zhihu.com/p/364923722
https://www.jianshu.com/p/43cc19426113

milvus架构

在这里插入图片描述

milvus的四大角色和十一组件

在这里插入图片描述

四大角色
  • Access layer:主要功能验证请求参数和合并返回结果
  • Coordinator service: 如系统大脑,分配任务;包括集群拓扑管理、负载均衡、时间戳生成、数据声明和数据管理等
  • Worker nodes: 执行具体工作节点
  • Storage:数据存储和持久化
十一组件
  • proxy:验证请求参数和合并返回结果
  • Root coordinator:处理DDL和DCL请求,如创建(删除)collection、partition、index,以及TSO (timestamp Oracle)管理
  • Query coordinator :管理查询节点的拓扑结构和负载均衡,以及将growing的segmend切换到sealed
  • Data coordinator:管理数据节点的拓扑结构,维护元数据,并触发刷新、压缩和其他后台数据操作;如1)分配 segment 数据2)记录分配空间及其过期时间3)Segment flush 逻辑 4)哪些 channel 被哪些 Data Node 消费则需要 data coord 来做一个整体的分配
  • Index coordinator:管理索引结点的拓扑结构,建立索引,并维护索引元数据。
  • Data node:订阅日志代理获取增量日志数据,处理变更请求,将日志数据打包成日志快照,并存储在对象存储中。
  • Index node:建立索引文件,存储对象存储中
  • Query node: 订阅日志代理检索增量日志数据,将它们转化为growing segments,从对象存储加载历史数据,并在向量数据和标量数据之间运行混合搜索。
  • Meta storage(etcd):存储了诸如collection schema、节点状态、消息消费检查点等元数据的快照。此外,Milvus还使用etcd进行服务注册和健康检查
  • Object storage:存储日志的快照文件、标量数据和矢量数据的索引文件以及中间查询结果。
  • Log broker:负责数据流的持久化、可靠异步查询的执行、事件通知以及查询结果的返回,还在Worker节点从系统故障中恢复时,确保增量数据的完整性。

proxy和其他系统所有主要组件的交互
在这里插入图片描述

milvus的数据模型

milvus属性和关系数据库类比

database:类比关系数据库database, 2.2.9之后支持;为多租户,一个租户一个database设计
collection:类比关系数据库表
Entity: 是传统数据库里面“一行”的概念
Field:字段

创建一个collection

# We're going to create a collection with 3 fields.
# +-+------------+------------+------------------+------------------------------+
# | | field name | field type | other attributes |       field description      |
# +-+------------+------------+------------------+------------------------------+
# |1|    "pk"    |   VarChar  |  is_primary=True |      "primary field"         |
# | |            |            |   auto_id=False  |                              |
# +-+------------+------------+------------------+------------------------------+
# |2|  "random"  |    Double  |                  |      "a double field"        |
# +-+------------+------------+------------------+------------------------------+
# |3|"embeddings"| FloatVector|     dim=8        |  "float vector with dim 8"   |
# +-+------------+------------+------------------+------------------------------+
fields = [FieldSchema(name="pk", dtype=DataType.VARCHAR, is_primary=True, auto_id=False, max_length=100),FieldSchema(name="random", dtype=DataType.DOUBLE),FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim)
]schema = CollectionSchema(fields, "hello_milvus is the simplest demo to introduce the APIs")print(fmt.format("Create collection `hello_milvus`"))
hello_milvus = Collection("hello_milvus", schema, consistency_level="Strong")参考:
https://raw.githubusercontent.com/milvus-io/pymilvus/master/examples/hello_milvus.py
shard、partition和segment
  • shard:提升写能力。有的文档也称channel,类似 Kafka 中的 topic。Shard 是指将数据写入操作分散到不同节点上,使 Milvus 能充分利用集群的并行计算能力进行写入。
  • partition:提升读能力。MMS通过partition key区分libId
  • segment :整个系统调度的最小单元,分为 Growing Segment 和 Sealed Segment

DML:任何传入的插入/删除请求都根据主键的哈希值被路由到shard,默认情况下是两个 Shard,推荐 Shard 的规模做到 Data Node 的两到三倍。
DDL:仅分享一个shard。
在这里插入图片描述
在这里插入图片描述

virtual channel VS physical channel
  • collection 在创建时可以指定 shard 的数目,一个 shard 代表一个 virtual channel
  • 将消息存储系统中的 channel 称之为 physical channel

一个 proxy 都会对应所有的 VChannel
多个 V channel 可以对应到同一个 PChannel
一个data node/query node对应多个PChannel
在这里插入图片描述

collection 级别的 VChannel可以很多,而且不同 collection 之间也可以共用 PChannel;从而利用消息系统高并发特性提高吞吐量。
在这里插入图片描述
在这里插入图片描述

https://zhuanlan.zhihu.com/p/517553501?utm_id=0

segment

Segment 在内存中的状态有 3 种,分别是 growing、sealed 和 flushed。 Growing:当新建了一个 segment 时就是 growing 的状态,它在一个可分配的状态。 Sealed:Segment 已经被关闭了,它的空间不可以再往外分配。 Flushed:Segment 已经被写入磁盘
Growing segment 内部的空间可以分为三部份:

  • Used (已经使用的空间):已经被 data node 消费掉。
  • Allocated:Proxy 向 Data coord deletor 去请求 segment 分配出的空间。
  • Free:还没有用到的空间。

Sealed segment 表示这个 segment 的空间不可以再进行分配。有几种条件可以 seal 一个 segment:

  1. 空间使用了达到上限(75%)。
  2. 收到 flush collection 要把这个 collection 里面所有的数据都持久化,这个 segment 就不能再分配空间了。
  3. Segment 存活时间太长。
  4. 太多 growing segment 会导致 data node 内存使用较多,进而强制关闭存活时间最久的那一部分 segment。
数据存储
minio中数据存储
  1. insert_log
    bucketName/file/insert_log/ collectionId/ partitionId/ segmentId/ field_ids
    featureId: 100
    libId: 101
    feature: 102
    在这里插入图片描述

  2. index_files
    bucketName/file/index_files/ index build id/IndexTaskVersion/ partitionId/ segmentId/index file
    在这里插入图片描述

  3. delta_log
    bucketName/file/delta_log/ collectionId/ partitionId/ segmentId/unique ID
    在这里插入图片描述

  4. stats_log
    bucketName/file/stats_log/ collectionId/ partitionId/ segmentId/field_id
    在这里插入图片描述

文件内部内容

@TODO

Binlog 里面分成了很多 event,每个 event 都会有两部分,一个是 event header 和 event data。Event header 存的就是一些元信息,比如说创建时间、写入节点 ID、event length 和 NextPosition(下个 event 的偏移量)

INSERT_EVENT 的 event data 固定的部分主要有三个,StartTimestamp、EndTimestamp 和 reserved。Reserved 也就是保留了一部分空间来扩展这个 fixed part。 Variable part 存的就是实际的插入数据。我们把这个数据序列化成一个 parquet 的形式存到这个文件里

https://zhuanlan.zhihu.com/p/486971488

milvus一些限制

https://milvus.io/docs/limitations.md

数据流向

在这里插入图片描述

Create Collection
  1. 会请求RootCoood,组织好格式,将数据存储etcd
  2. 会组织成Msg格式,发送消息队列
    在这里插入图片描述
Flush Collection

主要内容:1)将segment 由growing改为sealed状态,数据不可再写入 2)将数据持久化到Object storage

两个问题:

  1. sealed segments可能还在内存,没有持久化
    解决:通过定期调用GetSegmentInfo请求DataCoord,直到所有sealed segments flushed
  2. DataCoord 对sealed segments不再分配,但如何确认所有分配的都被DataNode消费了
    解决:1)DataCoord收到冻结后应该会记录当前的ts位点
    2)DataNode从MsgStream消费package时会向DataCoord 发送DataNodeTtMsg报告timestamp位点
    3)DataCoord后台线程解析该请求,判断是否已经消费到冻结的位点

在这里插入图片描述

https://github.com/milvus-io/milvus/blob/master/docs/design_docs/20211109-milvus_flush_collections.md

Insert Data
  1. 请求proxy,进行参数检验
  2. Proxy向RootCoord请求Timestamp(全局时钟)
  3. Proxy向DataCoord批量请求entities的segments以及primary keys
  4. 按照primary keys列进行一致性哈希映射到shard X,确定其pchannel(c1,…c6)
  5. 构造MsgStream对象<collection, partition, channel,…>并插入pchannel中
  6. DataNode(QueryNode)根据DataCoord配置从固定pchannel取出数据,并按照collection聚类(flowgraph)形成log snapshot,并写入s3等;并向DataCoord汇报binlog paths;
  7. DataCoord将写入路径记录在etcd
    在这里插入图片描述

参考:https://zhuanlan.zhihu.com/p/517553501?utm_id=0

Create Index

索引按照segment进行构建(索引异步删除逻辑类似)

  • RootCoord首先获取出该collection所有sealed segments;
  • 对每个segments,RootCoord复杂索引构建任务管理:
    • 向DataCoord获取其Binlog paths(GetInsertBinlogPathsRequest)
    • 向IndexCoord发送创建segment index请求(BuildIndexRequest)
  • IndexCoord收到请求,对该segment任务进行如下调度:
    • 生成segment索引构建任务(初始状态位unissued)存入etcd,
    • 根据负载均衡选择IndexNode并发送请求
    • IndexCoord监控segment索引构建任务状态
  • IndexNode segment索引构建过程
    • segment的binlogpaths中load log snapshots到memory中
    • 反序列化log snapshot为data blocks
    • 内存中构建segment index
    • index构建完毕后序列化为data blocks,写入index files(indexBuildID对应一个segment):(indexBuildID/IndexTaskVersion/partitionID/segmentID/key)
    • IndexNode修改etcd中index meta状态

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

参考:
https://milvus.io/docs/data_processing.md
https://github.com/milvus-io/milvus/blob/master/docs/design_docs/20211227-milvus_create_index.md

Search
  1. 从Object Storage获取Index Files中的flushed segment建立索引
  2. 也会从Growing Segments中建立索引,每个索引单位是一个segment
  3. Segments从Growing 到flushed 状态转换,也会有索引转换
    在这里插入图片描述

具体流程:

  1. query coord 会询问 data coord。Data coord 因为一直在负责持续的插入数据,它可以反馈给 query coord 两种信息:一种是已经持久化存储了哪些 segment,另一种是这些已经持久化的 segment 所对应 checkpoint 信息,根据 checkpoint 可以知道从 log broker 中获得这些 segment 所消费到的最后位置
  2. query coord 会输出一定的分配策略。这些策略也分成两部分:按照 segment 进行分配(如图示 segment allocator),或按照 channel 进行分配(如图示 channel allocator)
  3. 分配给不同的 query node 进行处理
  4. query node 就会按照策略进行相应的 load 和 watch 操作。如图示 query node 1 中,historical (批数据)部分会将分配给它的 S1、S3 数据从持久化存储中加载进来,而 streaming 部分会订阅 log broker 中的 Ch1,将这部分流数据接入
    在这里插入图片描述
    在这里插入图片描述

knowhere

对于 Knowhere,不区分训练数据和查询数据。对于每一个 segment,Knowhere 都是用该 segment 的全量数据做训练,再基于该训练结果插入全量数据构建索引

在这里插入图片描述

Milvus如何解决单机架构的一些问题

水平扩容

milvus的索引内存数据,存储在query node中,当query扩容(或缩容)时,由于索引文件持久化在对象存储中,query coord会进行重新分配,从而拥有水平扩(缩)容的能力

数据丢失

插入的数据,只要写入消息系统,就不会丢失;索引数据、插入日志也持久化到了对象存储中

数据一致性

Milvus每一条 insert message 中都有分配了一个时间戳,如果 service time 大于 query message 中的 guarantee timestamp,那么就会执行这个查询;从而通过配置,达到不同级别的数据一致性
如何使用 Milvus 向量数据库实现实时查询

效果

Milvus针对一个segment构建一个索引,最后proxy合并检索结果,默认一个segment 1g,从而避免单个索引过大导致效果问题

helm安装部署及升级

开源chart

# Add Milvus Helm repository.
$ helm repo add milvus https://milvus-io.github.io/milvus-helm/# Update charts locally.
$ helm repo update# show chart
helm show chart milvus/milvus# pull chart
helm pull milvus/milvus

prometheus+grafana监控

https://milvus.io/docs/monitor.md

参考
https://zhuanlan.zhihu.com/p/473617910
https://zhuanlan.zhihu.com/p/491030589
https://zhuanlan.zhihu.com/p/500551056
https://zhuanlan.zhihu.com/p/486703915
https://zhuanlan.zhihu.com/p/486971488
https://zhuanlan.zhihu.com/p/502880424
https://zhuanlan.zhihu.com/p/506698319
https://www.modb.pro/db/590924

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/115751.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mysql—面试50题—1

注&#xff1a;面试50题将分为5个部分&#xff0c;每部分10题 一、查询数据 学生表 Student create table Student(SId varchar(10),Sname varchar(10),Sage datetime,Ssex varchar(10)); insert into Student values(01 , 赵雷 , 1990-01-01 , 男); insert into Student …

微信小程序之会议OA首页数据交互,会议状态,会议人数转换,会议室交互,WXS的使用

前言&#xff1a; 本篇博客使用结合了SpringMVC&#xff0c;mybatis&#xff0c;maven&#xff0c;小程序&#xff0c;如果不熟悉使用可以翻看我之前的博客&#xff0c;以便大家可以更好的学习&#xff01;&#xff01;&#xff01; 一&#xff0c;会议OA首页数据的后台交互 这…

【SwiftUI模块】0060、SwiftUI基于Firebase搭建一个类似InstagramApp 2/7部分-搭建TabBar

SwiftUI模块系列 - 已更新60篇 SwiftUI项目 - 已更新5个项目 往期Demo源码下载 技术:SwiftUI、SwiftUI4.0、Instagram、Firebase 运行环境: SwiftUI4.0 Xcode14 MacOS12.6 iPhone Simulator iPhone 14 Pro Max SwiftUI基于Firebase搭建一个类似InstagramApp 2/7部分-搭建Tab…

机器学习笔记 - 特斯拉的占用网络简述

一、简述 ​ 2022 年,特斯拉宣布即将在其车辆中发布全新算法。该算法被称为occupancy networks,它应该是对Tesla 的HydraNet 的改进。 自动驾驶汽车行业在技术上分为两类:基于视觉的系统和基于激光雷达的系统。后者使用激光传感器来确定物体的存在和距离,而视觉系统…

算法通关村第十一关青铜挑战——移位运算详解

大家好&#xff0c;我是怒码少年小码。 计算机到底是怎么处理数字的&#xff1f; 数字在计算机中的表示 机器数 一个数在计算机中的二进制表示形式&#xff0c;叫做这个数的机器数。 机器数是带符号的&#xff0c;在计算机用一个数的最高位存放符号&#xff0c;正数为0&am…

【Java集合类面试八】、 介绍一下HashMap底层的实现原理

文章底部有个人公众号&#xff1a;热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享&#xff1f; 踩过的坑没必要让别人在再踩&#xff0c;自己复盘也能加深记忆。利己利人、所谓双赢。 面试官&#xff1a; 介绍一下HashMap底层的…

数据安全与PostgreSQL:最佳保护策略

在当今数字化时代&#xff0c;数据安全成为了企业不可或缺的一环。特别是对于使用数据库管理系统&#xff08;DBMS&#xff09;的组织来说&#xff0c;确保数据的完整性、保密性和可用性至关重要。在众多DBMS中&#xff0c;PostgreSQL作为一个强大而灵活的开源数据库系统&#…

MySQL中的表操作,配置文件,储存引擎,数据类型

MySQL中的表操作 1 查库&#xff08;已密码登陆mysql&#xff09; show databases; 2 添加库 create database t1; 3 表操作 1选定操作库 use t1 2在库里添加表格式 create table t1(id int, name varchar(32), gender varchar(32),age int); 3往表里添加具体元素 insert…

智慧燃气巡检管理系统

我们知道燃气设施的巡检、巡查是运维工作中一项重要的基础工作&#xff0c;而巡检人员主要靠手动记录&#xff0c;回到公司后还得再进行录入归档、导入照片&#xff0c;然后打印装订等&#xff0c;涉及工作量也是不小的&#xff1b;还有人员更替&#xff0c;易造成人员对燃气设…

【GWO-KELM预测】基于灰狼算法优化核极限学习机回归预测研究(matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

Dapper中使用字符串作为动态参数查询时,结果不是预期的问题

1、如下图&#xff0c;c.industryId作为string类型当作参数传递&#xff0c;解析时会加单引号&#xff0c;即&#xff1a;”c.industryId“&#xff0c; 生成的查询语句就会变成 -- 这里把c.IndustryGroup 当成实际的值所以会查询不出数据 select b.Name,COUNT(c.Id) Num …

数学建模——最大流问题(配合例子说明)

目录 一、最大流有关的概念 例1 1、容量网络的定义 2、符号设置 3、建立模型 3.1 每条边的容量限制 3.2 平衡条件 3.3 网络的总流量 4、网络最大流数学模型 5、计算 二、最小费用流 例2 【符号说明】 【建立模型】 &#xff08;1&#xff09;各条边的流量限制 &a…

Java赋值运算符(=)

赋值运算符是指为变量或常量指定数值的符号。赋值运算符的符号为“”&#xff0c;它是双目运算符&#xff0c;左边的操作数必须是变量&#xff0c;不能是常量或表达式。 其语法格式如下所示&#xff1a; 变量名称表达式内容 在 Java 语言中&#xff0c;“变量名称”和“表达式…

acwing第 126 场周赛 (扩展字符串)

5281. 扩展字符串 一、题目要求 某字符串序列 s0,s1,s2,… 的生成规律如下&#xff1a; s0 DKER EPH VOS GOLNJ ER RKH HNG OI RKH UOPMGB CPH VOS FSQVB DLMM VOS QETH SQBsnDKER EPH VOS GOLNJ UKLMH QHNGLNJ Asn−1AB CPH VOS FSQVB DLMM VOS QHNG Asn−1AB&#xff0c;其…

canvas绘制动态视频并且在视频上加上自定义logo

实现的效果&#xff1a;可以在画布上播放动态视频&#xff0c;并且加上自定义的图片logo放在视频的右下角 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthd…

找不到conda可执行文件:解决方法

1.在新版本的pycharm出现的问题如下&#xff1a; 2.解决方法: 2.1 将anaconda\Scripts\conda.exe选中 2.2选择自己的anconda自己的环境&#xff0c;之后就可以正常创建conda环境

python 之numpy 之随机生成数

文章目录 1. **生成均匀分布的随机浮点数**&#xff1a;2. **生成随机整数**&#xff1a;3. **生成标准正态分布随机数**&#xff1a;4. **生成正态分布随机数**&#xff1a;5. **生成均匀分布的随机浮点数**&#xff1a;6. **生成随机抽样**&#xff1a;7. **设置随机数种子**…

Axi_Lite接口的IP核与地址与缓冲与AxiGP0

AXI Interconnect互连内核将一个或多个 AXI 内存映射主设备连接到一个或多个内存映射从设备。 AXI_GP 接口 AXI_GP 接口是直接连接主机互联和从机互联的端口的。 AXI_HP 接口具有一个 1kB 的数据 FIFO 来做缓冲 [4]&#xff0c;但是 AXI_GP 接口与它不同&#xff0c;没…

24东北大学计算机计划招生数据

2.结语 24的保研名额很多&#xff0c;统考名额就这些&#xff0c;大家根据自己的情况做出选择 东大计算机不好考&#xff0c;但是不代表考不上&#xff01;加油 3.数据来源于官网 官网链接