基于Django与深度学习的股票预测系统 计算机竞赛

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 Django框架
  • 4 数据整理
  • 5 模型准备和训练
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于Django与深度学习的股票预测系统 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 课题背景

随着经济的发展,我国的股票市场建设正不断加强,社会直接融资正获得重要发展。股票市场行情的涨落与国民经济的发展密切相关。股票作为一种资本融资和投资的工具,是一种资本的代表形式,股票市场可以让上市公司便捷地在国内和国际市场融资。个人投资者、投资机构期望通过技术手段进行投资分析,能够从股票市场获得一定相对高额的投资收益。

2 实现效果

主界面
在这里插入图片描述
详细数据查看
在这里插入图片描述
股票切换
在这里插入图片描述

相关html


DOCTYPE html>



股票预测系统title><br/> {% load static %}<br/>

3 Django框架

Django是一个基于Web的应用框架,由python编写。Web开发的基础是B/S架构,它通过前后端配合,将后台服务器的数据在浏览器上展现给前台用户的应用。Django本身是基于MVC模型,即Model(模型)+View(视图)+
Controller(控制器)设计模式,View模块和Template模块组成了它的视图部分,这种结构使动态的逻辑是剥离于静态页面处理的。
Django框架的Model层本质上是一套ORM系统,封装了大量的数据库操作API,开发人员不需要知道底层的数据库实现就可以对数据库进行增删改查等操作。Django强大的QuerySet设计能够实现非常复杂的数据库查询操作,且性能接近原生SQL语句。Django支持包括PostgreSQL、My
Sql、SQLite、Oracle在内的多种数据库。Django的路由层设计非常简洁,使得将控制层、模型层和页面模板独立开进行开发成为可能。基于Django的Web系统工程结构示意图如图所示。

在这里插入图片描述

从图中可以看到,一个完整的Django工程由数个分应用程序组成,每个分应用程序包括四个部分:

urls路由层 :决定Web系统路由结构,控制页面间的跳转和数据请求路径

在这里插入图片描述

views视图层
:业务层,主要进行逻辑操作和运算,是前端页面模板和后端数据库之间的桥梁。Django框架提供了大量的数据库操作API,开发人员甚至不需要使用SQL语句即可完成大部分的数据库操作。
在这里插入图片描述

models模型层
:Web应用连接底层数据库的关键部分,封装了数据库表结构和实现。开发人员可以在Model层按照Django的指令要求进行建表,无须使用SQL语句或者第三方建表工具进行建表。建表的过程类似于定义变量和抽象编程语言中的类,非常方便。

在这里插入图片描述

templates模板层
:HTML模板文件,后端数据会填充HTML模板,渲染之后返回给前端请求。考虑到项目周期尽可能小,尽快完成平台的搭建,项目决定采用开源的Django框架开发整个系统的Web应用层。

在这里插入图片描述
关键代码


def main():
os.environ.setdefault(‘DJANGO_SETTINGS_MODULE’, ‘ExamOnline.settings’)
try:
from django.core.management import execute_from_command_line
except ImportError as exc:
raise ImportError(
"Couldn’t import Django. Are you sure it’s installed and "
"available on your PYTHONPATH environment variable? Did you "
“forget to activate a virtual environment?”
) from exc
execute_from_command_line(sys.argv)


4 数据整理

对于LSTM来说,至少需要两步整理过程:

  • 归一化
  • 变成3D样本(样本,时间步,特征数)

对于神经网络来说,归一化至关重要。如果缺失,会无法顺利训练和学习,俗称:Train不起来。对于LSTM来说,更为重要,因为LSTM内部包含tanh函数使得输出范围在-1到1之间。这就需要我们将预测值也进行归一化,常见的做法就是直接归一化到0和1之间。

将一般的特征X和目标y变成3D,我这里提供了一个函数,输入为原始的X_train_raw,X_test_raw,y_train_raw,y_test_raw。​n_input
为需要多少步历史数据,n_output为预测多少步未来数据。


def transform_dataset(train_set, test_set, y_train, y_test, n_input, n_output):
all_data = np.vstack((train_set, test_set))
y_set = np.vstack((y_train, y_test))[:,0]
X = np.empty((1, n_input, all_data.shape[1]))
y = np.empty((1, n_output))
for i in range(all_data.shape[0] - n_input - n_output):
X_sample = all_data[i:i + n_input, :]
y_sample = y_set[i + n_input:i + n_input + n_output]
if i == 0:
X[i] = X_sample
y[i] = y_sample
else:
X = np.append(X, np.array([X_sample]), axis=0)
y = np.append(y, np.array([y_sample.T]), axis=0)
train_X = X[:train_set.shape[0] - n_input, :, :]
train_y = y[:train_set.shape[0] - n_input, :]
test_X = X[train_set.shape[0] -
n_input:all_data.shape[0] -
n_input -
n_output, :, :]
test_y = y[train_set.shape[0] -
n_input:all_data.shape[0] -
n_input -
n_output, :]
return train_X, train_y, test_X, test_y

5 模型准备和训练

Keras已经包含LSTM
网络层,调用方式和普通的神经网络没有特别大的区别,仅仅需要指定输入数据的shape。这里我们设计一个简单的神经网络,输入层为LSTM,包含20个节点,输出层为普通的Dense,损失函数采用mean_absolute_error。


n_timesteps, n_features, n_outputs = train_X.shape[1], train_X.shape[2], train_y.shape[1]
# create a model
model = Sequential()
model.add(LSTM(10, input_shape=(n_timesteps, n_features),kernel_initializer=‘glorot_uniform’,
kernel_regularizer=regularizers.l2(0.0),return_sequences=False))
#model.add(LSTM(20, input_shape=(n_timesteps, n_features),kernel_initializer=‘glorot_uniform’,
# kernel_regularizer=regularizers.l2(0.0)))

model.add(Dense(n_outputs,kernel_initializer='glorot_uniform',kernel_regularizer=regularizers.l2(0.0)))model.compile(optimizer='adam', loss='mean_absolute_error')
print(model.summary())

调用fit函数对训练集进行学习。由于时间序列具有很明显的趋势,因此有必要将样本打乱。这里需要说明:我们打乱的是“样本”,不影响每个样本内在的序列关系。LSTM只会根据样本内在的序列关系(时间步)来更新自己的隐状态。


from sklearn.utils import shuffle
train_X,train_y = shuffle(train_X,train_y,random_state=42)
plt.plot(train_y)
# fit the RNN model
history = model.fit(
train_X,
train_y,
epochs=300,
batch_size=512,
validation_split=0.3)
figure = plt.Figure()
plt.plot(history.history[‘loss’],
‘b’,
label=‘Training loss’)
plt.plot(history.history[‘val_loss’],
‘r’,
label=‘Validation loss’)
plt.legend(loc=‘upper right’)
plt.xlabel(‘Epochs’)
plt.show()

查看loss曲线,确保训练已经稳定。
在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/114677.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Ubuntu桌面环境的切换方法

你在找它吗&#xff1f; 国内麒麟、深度等系统虽然界面更炫&#xff0c;但——软件仓库与Ubuntu官方已不兼容。国内系统遇到稳定性问题&#xff0c;还是得拿Ubuntu做参照。今天本来介绍下这款Linux桌面。 为什么在 Ubuntu 上考虑 LXQt&#xff1f; 性能&#xff1a;LXQt设计为…

计算机网络-计算机网络体系结构-传输层

目录 一、UDP 二、TCP 特点 首部格式 连接管理 可靠传输 流量控制(点对点) 拥塞控制(全局) 三、拥塞控制算法 慢开始&拥塞避免 快重传&快恢复 功能一&#xff1a;提供进程与进程之间的逻辑通信 功能二&#xff1a;复用和分用 功能三&#xff1a;对收到的报…

摩尔信使MThings的协议转换(数据网关)功能

摩尔信使MThings可以作为现场总线&#xff08;RS485&#xff09;和以太网的数据中枢&#xff0c;并拥有强大的Modbus协议转换功能。 数据网关功能提供协议转换和数据汇聚功能&#xff0c;可实现多维度映射&#xff0c;包括&#xff1a;不同的通道(总线)类型、协议类型&#xff…

PHP yield

概念&#xff1a; Generator&#xff1a;带 yield的function yield&#xff1a;Generator或task的中断关键字&#xff0c;执行到yield时一次调度周期执行完即阻塞&#xff0c;并返回右侧表达式结果&#xff0c;等待下一次调度器运行next()或迭代遍历才会继续往下执行&#xff0…

Axure RP静态站点的发布与内网穿透结合实现远程访问本地原型页面

文章目录 前言1.在AxureRP中生成HTML文件2.配置IIS服务3.添加防火墙安全策略4.使用cpolar内网穿透实现公网访问4.1 登录cpolar web ui管理界面4.2 启动website隧道4.3 获取公网URL地址4.4. 公网远程访问内网web站点4.5 配置固定二级子域名公网访问内网web站点4.5.1创建一条固定…

python生成的报告中绘制了多张图,但最后都混合到一起了

问题来源&#xff1a; 用python生成的报告中&#xff0c;存在三张图&#xff0c;第一个张图是正常的&#xff0c; 后面的图都是不正常的&#xff0c;全都是多张图混合而成的&#xff0c;这是为什么呢&#xff1f; 三段代码均是下述调用方式 import matplotlib.pyplot as plt pl…

【Linux】操作系统的认识

操作系统 1. 冯诺依曼体系结构2. 操作系统 1. 冯诺依曼体系结构 冯诺依曼体系结构的介绍 冯.诺依曼结构消除了原始计算机体系中&#xff0c;只能依靠硬件控制程序的状况&#xff08;程序作为控制器的一部分&#xff0c;作为硬件存在&#xff09;&#xff0c;将程序编码存储在…

JUC并发编程笔记2

省流&#xff1a; 自己笔记&#xff0c;划走~~~~ 缓存更新策略

mybatis-plus自动填充

前言 这是我在这个网站整理的笔记&#xff0c;关注我&#xff0c;接下来还会持续更新。 作者&#xff1a;神的孩子都在歌唱 mybatis-plus自动填充 大家做设计数据表的时候&#xff0c;基本上都会有del_flag&#xff0c;create_time, update_time,这三个字段&#xff0c;这也是…

计算机视觉基础(5)——特征点及其描述子

前言 本文我们将学习到特征点及其描述子。在特征点检测中&#xff0c;我们将学习角点检测和SIFT关键点检测器&#xff0c;角点检测以哈里斯角点检测器为例进行说明&#xff0c;SIFT将从高斯拉普拉斯算子和高斯差分算子展开。在描述子部分&#xff0c;我们将分别学习SIFT描述子和…

内置式永磁同步电机复矢量电流调节器设计

导读&#xff1a;本期主要介绍永磁同步电机复矢量电流调节器。针对内置式永磁同步电机d、q轴电流存在动态耦合的问题&#xff0c;在基于有效磁链概念得到IPMSM的复矢量数学模型&#xff0c;设计出相应的复矢量电流调节器&#xff0c;实现了d、q轴电流的动态解耦。通过仿真验证所…

vue集成钉钉单点登录

初始环境判断 判断是否是来自钉钉环境的访问&#xff0c;返回&#xff1a;boolean类型值 window.navigator.userAgent.includes("DingTalk")前端引入vue中钉钉相关的依赖&#xff0c;并获取钉钉的临时授权码 import * as dingtalk from dingtalk-jsapi; let that …

No171.精选前端面试题,享受每天的挑战和学习

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…

Linux-git

文章目录 git简介git常用命令配置初始化仓库将文件添加到暂存区将暂存区文件加入版本库对比工作区某文件和暂存区中的区别将暂存区的文件移除但git仍管理将文件移除暂存区并且git不再管理查看版本库切换到之前的版本恢复文件持久化 云端将本地的项目推送到远程仓库将远程仓库的…

深度强化学习 第 5 章 SARSA 算法

上一章介绍了 Q 学习的表格形式和神经网络形式&#xff08;即 DQN&#xff09;。 TD 算法是一大类算法的总称。上一章用的 Q 学习是一种 TD 算法&#xff0c; Q 学习的目的是学习最优动作价值函数 Q ⋆ Q_⋆ Q⋆​ 本章介绍 SARSA&#xff0c;它也是一种 TD 算法&#xff0c; S…

车载视频如何转换视频格式

当你收集了多种视频想在车内进行播放&#xff0c;它们可能不会自动播放。你有可能会在屏幕上看到一条消息&#xff0c;显示“文件格式不受支持”&#xff0c;这是因为这些视频可能采用了你的汽车无法识别的格式。 那我们如何才可以转换为车载播放器上运行的最重要且最广泛使用…

网络协议--IP:网际协议

3.1 引言 IP是TCP/IP协议族中最为核心的协议。所有的TCP、UDP、ICMP及IGMP数据都以IP数据报格式传输&#xff08;见图1-4&#xff09;。许多刚开始接触TCP/IP的人对IP提供不可靠、无连接的数据报传送服务感到很奇怪。 不可靠&#xff08;unreliable&#xff09;的意思是它不能…

安卓富文本部分高亮及点击事件

安卓富文本部分高亮及点击事件 前言一、富文本是什么&#xff1f;二、实现方法1.使用html2.使用SpannableString 总结 前言 富文本其实不是很常用&#xff0c;但有遇到了过后使用很方便的场景&#xff0c;例如免责声明。这时候就很重要了&#xff0c;前段时间遇到了&#xff0…

可视化(Visual) SQL初探

一、背景 在当今数字化时代&#xff0c;数据信息作为企业和组织的宝贵资源之一&#xff0c;如何挖掘其中的价值并帮助企业和组织个体决策&#xff0c;已然成为炙手可热的话题。数据分析作为其具体载体&#xff0c;是从数据中提取信息、洞察机遇、制定战略、做出决策的关键过程…

【C++面向对象】2.构造函数、析构函数

文章目录 【 1. 构造函数 】1.1 带参构造函数--传入数据1.2 无参构造函数--不传入数据1.3 实例1.4 拷贝构造函数 【 2. 析构函数 】 【 1. 构造函数 】 类的构造函数是类的一种特殊的成员函数&#xff0c;它会 在每次创建类的新对象时执行。 构造函数的名称与类的名称是完全相同…