图像滤波器

图像噪声
        • 图像噪声是图像在获取或是传输过程中受到随机信号干扰,妨碍人们对图像理解及分析处理
的信号。
        • 图像噪声的产生来自图像获取中的环境条件和传感元器件自身的质量,图像在传输过程中产
生图像噪声的主要因素是所用的传输信道受到了噪声的污染。
高斯噪声
高斯噪声(Gaussian noise)是指它的概率密度函数服从高斯分布的一类噪声。
特别的,如果一个噪声,它的幅度分布服从高斯分布,而它的任意两个采样样本之间不相关,则
称它为高斯白噪声。
必须区分高斯噪声和白噪声两个不同的概念。高斯噪声是指噪声的概率密度函数服从高斯分布,
白噪声是指噪声的任意两个采样样本之间不相关,两者描述的角度不同。白噪声不必服从高斯分
布,高斯分布的噪声不一定是白噪声。
产生原因:
1)图像传感器在拍摄时不够明亮、亮度不够均匀;
2)电路各元器件自身噪声和相互影响;
3)图像传感器长期工作,温度过高

 

椒盐噪声
椒盐噪声又称为脉冲噪声,它是一种随机出现的白点或者黑点。
椒盐噪声 = 椒噪声 (pepper noise)+ 盐噪声(salt noise)。 椒盐噪声的值为0(椒)或者255(盐)。
前者是低灰度噪声,后者属于高灰度噪声。一般两种噪声同时出现,呈现在图像上就是黑白杂点。
对于彩色图像,也有可能表现为在单个像素BGR三个通道随机出现的255或0。
如果通信时出错,部分像素的值在传输时丢失,就会发生这种噪声。
椒盐噪声的成因可能是影像讯号受到突如其来的强烈干扰而产生等。例如失效的感应器导致像素值
为最小值,饱和的感应器导致像素值为最大值
要点总结:
1.图像滤波,即在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像预处理中不可缺少
的操作,其处理效果的好坏将直接影响到后续图像处理和分析的有效性和可靠性。
2.消除图像中的噪声成分叫作图像的平滑化或滤波操作。信号或图像的能量大部分集中在幅度谱的低频和
中频段是很常见的,而在较高频段,感兴趣的信息经常被噪声淹没。因此一个能降低高频成分幅度的滤波器
就能够减弱噪声的影响。
3.平滑滤波是低频增强的空间域滤波技术。它的目的有两类:一类是模糊;另一类是消除噪音。空间域的
平滑滤波一般采用简单平均法进行,就是求邻近像元点的平均亮度值。邻域的大小与平滑的效果直接相关,
邻域越大平滑的效果越好,但邻域过大,平滑会使边缘信息损失的越大,从而使输出的图像变得模糊,因此
需合理选择邻域的大小。
4.关于滤波器,一种形象的比喻法是:我们可以把滤波器想象成一个包含加权系数的窗口,当使用这个滤
波器平滑处理图像时,就把这个窗口放到图像之上,透过这个窗口来看我们得到的图像。
滤波目的:
1、消除图像中混入的噪声。2、为图像识别抽取出图像特征。
滤波要求:
1、不能损坏图像轮廓及边缘 。2、图像视觉效果应当更好。

均值滤波
均值滤波,是图像处理中最常用的手段,从频率域观点来看均值滤波是一种低通滤波器,高频信号将
会去掉,因此可以帮助消除图像尖锐噪声,实现图像平滑,模糊等功能。理想的均值滤波是用每个像
素和它周围像素计算出来的平均值替换图像中每个像素。

 

从左到右从上到下计算图像中的每个像素,最终得到处理后的图像。
均值滤波可以加上两个参数,即迭代次数,Kernel数据大小。
一个相同的Kernel,但是多次迭代就会效果越来越好。
同样,迭代次数相同,Kernel矩阵越大,均值滤波的效果就越明显。

 

注意 ,这个kernel加权求和之后还得除以9才是均值,用均值替换蓝色中心像素
优点:算法简单,计算速度快;
缺点:降低噪声的同时使图像产生模糊,特别是景物的边缘和细节部分
中值滤波
中值滤波也是消除图像噪声最常见的手段之一,特别是消除椒盐噪声,中值滤波的效果要比均值滤
波更好。中值滤波跟均值滤波唯一不同是,不是用均值来替换中心每个像素,而是将周围像素和中
心像素排序以后,取中值。
一个3X3大小的中值滤波如下

 

优点:抑制效果很好,画面的清析度基本保持;
缺点:对高斯噪声的抑制效果不是很好
最大最小值滤波
最大最小值滤波是一种比较保守的图像处理手段,与中值滤波类似,首先要排序周围像素和中心像
素值,然后将中心像素值与最小和最大像素值比较,如果比最小值小,则替换中心像素为最小值,
如果中心像素比最大值大,则替换中心像素为最大值。
一个Kernel矩阵为3X3的最大最小值滤波如下:

 

拓展 -- 引导滤波
在引导滤波的定义中,用到了局部线性模型。
该模型认为,某函数上一点与其邻近部分的点成线性关系,一个复杂的函数就可以用很多局部
的线性函数来表示,当需要求该函数上某一点的值时,只需计算所有包含该点的线性函数的值
并做平均即可。这种模型,在表示非解析函数上,非常有用。

 

图像增强
        有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特
征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富
信息量,加强图像判读和识别效果,满足某些特殊分析的需要。
图像增强可以分为两种:
点处理技术。只对单个像素进行处理。
领域处理技术。对像素点及其周围的点进行处理,即使用卷积核
1. 线性变换
图像增强线性变换主要对图像的对比度和亮度进行调整:
 
参数 a 影响图像的对比度,参数 b 影响图像的亮度,具体可分为以下几种情况:
a>1: 增强图像的对比度,图像看起来更加清晰
a<1: 减小了图像的对比度, 图像看起来变模糊
a=1 and b≠0:图像整体的灰度值上移或者下移,也就是图像整体变亮或者变暗,不会改变图像的对比
度,b>0时图像变亮,b<0时图像变暗
2. 分段线性变换
即对处于某个感兴趣的区域的x,将其对比度系数a增大或减小,从而增大或减小这个区域的对比度
3. 对数变换
对数变换将图像的低灰度值部分扩展,将其高灰度值部分压缩,以达到强调图像低灰度部分的目的;
同时可以很好的压缩像素值变化较大的图像的动态范围,目的是突出我们需要的细节。

 

4. 幂律变换/伽马变换
幂律变换主要用于图像的校正,对漂白的图片或者是过黑的图片进行修正。

 

 

根据 γ的大小,主要可分为以下两种情况:
γ > 1: 处理漂白的图片,进行灰度级压缩
γ < 1: 处理过黑的图片,对比度增强,使得细节看的更加清楚
图像增强常用方法(包括但不限于):
1. 翻转、平移、旋转、缩放
2. 分离单个r、g、b三个颜色通道
3. 添加噪声
4. 直方图均衡化
5. Gamma变换
6. 反转图像的灰度
7. 增加图像的对比度
8. 缩放图像的灰度
9. 均值滤波
10. 中值滤波
11. 高斯滤波

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/11307.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【技术架构】技术架构的演进

文章目录 前言1.名词解释(常见概念)1.1 应用&#xff08;Application&#xff09; / 系统&#xff08;System&#xff09;1.2 模块&#xff08;Module&#xff09; / 组件&#xff08;Component&#xff09;1.3 分布式&#xff08;Distributed&#xff09;1.4 集群&#xff08;…

机器学习 day30(正则化参数λ对模型的影响)

λ对Jcv和Jtrain的影响 假设该模型为四阶多项式当λ很大时&#xff0c;在最小化J的过程中&#xff0c;w会很小且接近0&#xff0c;此时模型f(x)近似于一个常数&#xff0c;所以此时模型欠拟合&#xff0c;Jtrain和Jcv都很大当λ很小时&#xff0c;表示模型几乎没有正则化&…

5.2.tensorRT基础(2)-使用onnx解析器来读取onnx文件(源码编译)

目录 前言1. ONNX解析器2. libnvonnxparser.so3. 源代码编译4. 补充知识总结 前言 杜老师推出的 tensorRT从零起步高性能部署 课程&#xff0c;之前有看过一遍&#xff0c;但是没有做笔记&#xff0c;很多东西也忘了。这次重新撸一遍&#xff0c;顺便记记笔记。 本次课程学习 t…

Rocky Linux 8.4在Tesla P100服务器里的部署及显卡cudnn安装-极度精简

安装Rocky linux教程 https://developer.aliyun.com/article/1074889 注意事项 Tesla P100服务器&#xff0c;按Delete进入bios,设置Daul模式&#xff0c;第一选项选UEFI hard disk(用驱动盘选这个)&#xff0c;usb的就选UEFI usb 安装rocky linux时&#xff0c;这两项默认&…

css中flex后文本溢出的问题

原因&#xff1a; 为了给flex item提供一个合理的默认最小尺寸&#xff0c;flex将flex item的min-width 和 min-height属性设置为了auto flex item的默认设置为&#xff1a; min-width&#xff1a; auto 水平flex布局 min-height&#xff1a;auto 垂直flex布局 解决办法&…

【ICCV2023】Scale-Aware Modulation Meet Transformer

Scale-Aware Modulation Meet Transformer, ICCV2023 论文&#xff1a;https://arxiv.org/abs/2307.08579 代码&#xff1a;https://github.com/AFeng-x/SMT 解读&#xff1a;ICCV2023 &#xff5c; 当尺度感知调制遇上Transformer&#xff0c;会碰撞出怎样的火花&#xff1…

【Nodejs】Node.js简介

1.前言 Node 的重要性已经不言而喻&#xff0c;很多互联网公司都已经有大量的高性能系统运行在 Node 之上。Node 凭借其单线程、异步等举措实现了极高的性能基准。此外&#xff0c;目前最为流行的 Web 开发模式是前后端分离的形式&#xff0c;即前端开发者与后端开发者在自己喜…

Gitlab 合并分支与请求合并

合并分支 方式一&#xff1a;图形界面 使用 GitGUI&#xff0c;右键菜单“GitExt Browse” - 菜单“命令” - 合并分支 方式二&#xff1a;命令行 在项目根目录下打开控制台&#xff0c;注意是本地 dev 与远程 master 的合并 // 1.查看本地分支&#xff0c;确认当前分支是否…

2、HAproxy调度算法

HAProxy的调度算法可以大致分为以下几大类&#xff1a; 静态算法&#xff1a;这类算法的调度策略在配置时就已经确定&#xff0c;并且不会随着负载的变化而改变。常见的静态算法有&#xff1a; Round Robin(轮询) Least Connections(最少连接数) Static-Weight(静态权重) Sourc…

QSlider 样式 Qt15.15.2 圆形滑块

在看文档的时候测试了一下demo&#xff0c;然后发现了一个有意思的东西&#xff0c;自定义滑块为带边框的圆形。 在设置的时候边框总是和预期的有点误差&#xff0c;后来发现了这样一个计算方式可以画一个比较标准的圆。&#xff08;ABCDEF在下方代码块内&#xff09; 滑块的…

Kubernetes 之CNI 网络插件大对比

介绍 网络架构是Kubernetes中较为复杂、让很多用户头疼的方面之一。Kubernetes网络模型本身对某些特定的网络功能有一定要求&#xff0c;但在实现方面也具有一定的灵活性。因此&#xff0c;业界已有不少不同的网络方案&#xff0c;来满足特定的环境和要求。 CNI意为容器网络接…

【iOS】—— 持久化

文章目录 数据持久化的目的iOS中数据持久化方案数据持久化方式分类内存缓存磁盘缓存 沙盒机制获取应用程序的沙盒路径沙盒目录的获取方式 持久化数据存储方式XML属性列表Preferences偏好设置&#xff08;UserDefaults&#xff09;数据库存储什么是序列化和反序列化&#xff0c;…

Hadoop概念学习(无spring集成)

Hadoop 分布式的文件存储系统 三个核心组件 但是现在已经发展到很多组件的s 或者这个图 官网地址: https://hadoop.apache.org 历史 hadoop历史可以看这个: https://zhuanlan.zhihu.com/p/54994736 优点 高可靠性&#xff1a; Hadoop 底层维护多个数据副本&#xff0c;所…

工程师分享:如何解决传导干扰?

电磁干扰 EMI 中电子设备产生的干扰信号是通过导线或公共电源线进行传输&#xff0c;互相产生干扰称为传导干扰。传导干扰给不少电子工程师带来困惑&#xff0c;如何解决传导干扰&#xff1f; 找对方法&#xff0c;你会发现&#xff0c;传导干扰其实很容易解决&#xff0c;只要…

Jmeter基础篇(17)Jmeter中Stop和X的区别

一、前言 在Apache JMeter中&#xff0c;Stop和X之间存在一些区别。虽然它们都是用于结束测试的不同方法&#xff0c;但它们在实施方式和效果上存在一些差异。 二、Jmeter中的Stop 首先&#xff0c;让我们了解一下Stop。 在JMeter中&#xff0c;Stop是指在测试结束时关闭线…

css实现步骤条中的横线

实现步骤中的横线&#xff0c;我们使用css中的after选择器&#xff0c;content写空&#xff0c;然后给这个范围设定一个绝对定位&#xff0c;相当于和它设置伪类选择的元素的位置&#xff0c;直接看代码&#xff1a; const commonStyle useMemo(() > ({fontSize: 30px}),[]…

前端开发中的微服务架构设计

前端服务化和小程序容器技术为前端应用带来了更好的组织结构、可维护性和可扩展性。这些技术的应用将促进前端开发的创新和发展&#xff0c;使团队能够更好地应对复杂的前端需求和业务挑战。通过将前端视为一个服务化的架构&#xff0c;我们能够构建出更强大、可靠且可持续的前…

windows安装npm, 命令简介

安装步骤 要在Windows上安装npm&#xff0c;按照以下步骤操作&#xff1a; 首先&#xff0c;确保您已经在计算机上安装了Node.js。可以从Node.js官方网站&#xff08;Node.js&#xff09;下载并安装Node.js。完成Node.js的安装后&#xff0c;打开命令提示符&#xff08;Command…

Linux推出Debian 12.1,并进行多方面系统修复

据了解&#xff0c;Debian是最古老的 GNU / Linux 发行版之一&#xff0c;也是许多其他基于 Linux 的操作系统的基础&#xff0c;包括 Ubuntu、Kali、MX 和树莓派 OS 等。 此外&#xff0c;该操作系统以稳定性为重&#xff0c;不追求花哨的新功能&#xff0c;因此新版本的发布…

【Huawei】WLAN实验(三层发现)

拓扑图如上&#xff0c;AP与S1在同一VLAN,S1与AC在同一VLAN&#xff0c;AP采用三层发现AC&#xff0c;AP与客户的DHCP由S1提供。 S1配置 vlan batch 10 20 30 dhcp enable ip pool apgateway-list 192.168.20.1network 192.168.20.0 mask 255.255.255.0option 43 sub-option …