Linux系统编程_进程间通信第2天: 共享内存(全双工)、信号(类似半双工)、信号量

1. 共享内存概述(433.10)(全双工)

在这里插入图片描述

2. 共享内存编程实现(434.11)

在这里插入图片描述

共享内存(Shared Memory),指两个或多个进程共享一个给定的存储区

特点

  1. 共享内存是最快的一种 IPC,因为进程是直接对内存进行存取。
  2. 因为多个进程可以同时操作,所以需要进行同步。
  3. 信号量 + 共享内存通常结合在一起使用,信号量用来同步对共享内存的访问。

原型

#include <sys/shm.h>
// 创建或获取一个共享内存:成功返回共享内存ID,失败返回-1
int shmget(key_t key, size_t size, int flag);
// 连接共享内存到当前进程的地址空间:成功返回指向共享内存的指针,失败返回-1
void *shmat(int shm_id, const void *addr, int flag);
// 断开与共享内存的连接:成功返回0,失败返回-1
int shmdt(void *addr); 
// 控制共享内存的相关信息:成功返回0,失败返回-1
int shmctl(int shm_id, int cmd, struct shmid_ds *buf);
  • 当用 shmget 函数创建一段共享内存时,必须指定其 size;而如果引用一个已存在的共享内存,则将 size 指定为 0 。
  • 当一段共享内存被创建以后,它并不能被任何进程访问。必须使用 shmat 函数连接该共享内存到当前进程的地址空间,连接成功后把共享内存区对象映射到调用进程的地址空间,随后可像本地空间一样访问。
  • shmdt 函数是用来断开 shmat 建立的连接的。注意,这并不是从系统中删除该共享内存,只是当前进程不能再访问该共享内存而已。
  • shmctl 函数可以对共享内存执行多种操作,根据参数 cmd 执行相应的操作。常用的是IPC_RMID(从系统中删除该共享内存)。

代码

  • IPC/shmwr.c(写数据至共享内存)
#include <sys/ipc.h>
#include <sys/shm.h>//shmget
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>//sleep
//int shmget(key_t key, size_t size, int shmflg);
//void *shmat(int shmid, const void *shmaddr, int shmflg);//共享内存的id,0让linux内核自动安排共享内存,0让连接到的空间是可读可写的
//int shmdt(const void *shmaddr);
//int shmctl(int shmid, int cmd, struct shmid_ds *buf);//id,指令,0存放卸载共享内存时产生的信息
int main(){int shmid;char *shmaddr;key_t key;key = ftok(".",1);shmid = shmget(key,1024*4,IPC_CREAT|0666);//创建一个共享内存,可读可写的权限if(shmid == -1){printf("shmget not Ok\n");exit(-1);//异常退出返回-1}shmaddr = shmat(shmid,0,0);//连接共享内存到当前进程的地址空间,映射:printf("shmat ok\n");strcpy(shmaddr,"Jessie is me.");//写数据到共享内存的shmaddrsleep(5);//休眠让别的进程来读shmdt(shmaddr);//断开与共享内存的连接,卸载shmctl(shmid, IPC_RMID, 0);//删除此共享内存printf("quit\n");return 0;
}
  • IPC/shmrd.c(从共享内存读数据)
#include <sys/ipc.h>//shmget
#include <sys/shm.h>//shmget
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>//sleep
//int shmget(key_t key, size_t size, int shmflg);
//void *shmat(int shmid, const void *shmaddr, int shmflg);//共享内存的id,0让linux内核自动安排共享内存,0让连接到的空间是可读可写的
//int shmdt(const void *shmaddr);
//int shmctl(int shmid, int cmd, struct shmid_ds *buf);//id,指令,0存放卸载共享内存时产生的信息
int main(){int shmid;char *shmaddr;	key_t key;key = ftok(".",1);shmid = shmget(key,1024*4,0);//打开/获取此共享内存if(shmid == -1){printf("shmget not Ok\n");exit(-1);//异常退出返回-1}shmaddr = shmat(shmid,0,0);//连接共享内存到当前进程的地址空间,映射,读取字符串printf("shmat ok\n");printf("data: %s\n",shmaddr);//打印来自己写端的数据shmdt(shmaddr);//断开与共享内存的连接,卸载printf("quit\n");return 0;
}
  • 查看共享内存端的命令
    在这里插入图片描述
  • 查看以下源码手册的方法
    在这里插入图片描述

3. 信号概述(12)(类似半双工)

  • Linux 信号(signal)
    • https://www.jianshu.com/p/f445bfeea40a
  • 对于 Linux来说,实际信号是软中断,许多重要的程序都需要处理信号。
  • 信号,为 Linux 提供了一种处理异步事件的方法。比如,终端用户输入了 ctrl+c 来中断程序,会通过信号机制停止一个程序。

信号概述

  1. 信号的名字和编号:
  • 每个信号都有一个名字和编号,这些名字都以 “SIG” 开头,例如 “SIGIO ”、“SIGCHLD” 等等。
  • 信号定义在signal.h头文件中,信号名(的编号)都定义为正整数。
  • 具体的信号名称可以使用kill -l来查看信号的名字以及序号,信号是从 1 开始编号的,不存在 0 号信号。kill 对于信号 0 有特殊的应用。
    信号的名称
  1. 信号的处理:

信号的处理有三种方法,分别是:忽略、捕捉和默认动作

  • 忽略信号,大多数信号可以使用这个方式来处理,但是有两种信号不能被忽略(分别是 SIGKILLSIGSTOP)。因为他们向内核和超级用户提供了进程终止和停止的可靠方法,如果忽略了,那么这个进程就变成了没人能管理的的进程,显然是内核设计者不希望看到的场景
  • 捕捉信号,需要告诉内核,用户希望如何处理某一种信号,说白了就是写一个信号处理函数,然后将这个函数告诉内核。当该信号产生时,由内核来调用用户自定义的函数,以此来实现某种信号的处理。
  • 系统默认动作,对于每个信号来说,系统都对应由默认的处理动作,当发生了该信号,系统会自动执行。不过,对系统来说,大部分的处理方式都比较粗暴,就是直接杀死该进程。具体的信号默认动作可以使用man 7 signal来查看系统的具体定义。也可参考 《UNIX 环境高级编程(第三部)》的 P251——P256 中间对于每个信号都有详细的说明。

了解了信号的概述,那么,信号是如何来使用呢?

其实对于常用的 kill 命令就是一个发送信号的工具,kill -9 PID来杀死进程。比如,我在后台运行了一个 a 工具,通过 ps 命令可以查看他的 PID,通过 kill -9 来发送了一个终止进程的信号来结束了 a 进程。如果查看信号编号和名称,可以发现 9 对应的是 9) SIGKILL,正是杀死该进程的信号。而以下的执行过程实际也就是执行了 9 号信号的默认动作——杀死进程。
杀死进程

信号处理函数的注册

  1. 入门版:函数signal
  2. 高级版:函数sigaction

信号处理发送函数

  1. 入门版:kill
  2. 高级版:sigqueue

4. 信号编程(13)

  • man 2 signalman 2 kill
  • IPC/signalDemo1.c
#include <signal.h>
#include <stdio.h>
//       typedef void (*sighandler_t)(int);
//       sighandler_t signal(int signum, sighandler_t handler);
void handler(int signum)//直接定义信号处理函数,无需函数指针类型别名
{printf("get signum=%d\n",signum);switch(signum){case 2:printf("SIGINT\n");//添加自定义的信号处理逻辑break;case 9:printf("SIGKILL\n");break;case 10:printf("SIGUSR1\n");break;}printf("never quit\n");
}int main()
{//直接使用信号处理函数注册信号处理程序//signal(SIGINT,handler);//signal(SIGKILL,handler);signal(SIGINT,SIG_IGN);//使用 SIG_IGN 宏来忽略信号signal(SIGKILL,SIG_IGN);//忽略无效,不能被捕获、忽略或处理signal(SIGUSR1,handler);while(1);return 0;
}
  • IPC/signalDemo1CON.c
#include <signal.h>
#include <stdio.h>
#include <sys/types.h>
#include <stdlib.h>//atoi systemint main(int argc ,char **argv)
{int signum;int pid;char cmd[128]={0};signum = atoi(argv[1]);//将字符串转换为整数类型pid = atoi(argv[2]);printf("num=%d,pid=%d\n",signum,pid);	//	kill(pid,signum);sprintf(cmd,"kill -%d %d",signum,pid);//构建有效的cmd格式system(cmd);//执行shell命令printf("send signal ok\n");return 0;
}

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5. 信号如何携带消息(14)

信号注册函数——高级版

  • sigaction的函数原型
#include <signal.h>int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact);struct sigaction {void       (*sa_handler)(int); //信号处理程序,不接受额外数据,SIG_IGN 为忽略,SIG_DFL 为默认动作void       (*sa_sigaction)(int, siginfo_t *, void *); //信号处理程序,能够接受额外数据和sigqueue配合使用sigset_t   sa_mask;//阻塞关键字的信号集,可以再调用捕捉函数之前,把信号添加到信号阻塞字,信号捕捉函数返回之前恢复为原先的值。int        sa_flags;//影响信号的行为SA_SIGINFO表示能够接受数据//void     (*sa_restorer)(void);//不再使用,已经被弃用};
//回调函数句柄sa_handler、sa_sigaction只能任选其一
  • 关于void (*sa_sigaction)(int, siginfo_t *, void *);处理函数来说还需要有一些说明。void*是接收到信号所携带的额外数据;而struct siginfo这个结构体主要适用于记录接收信号的一些相关信息。
 siginfo_t {int      si_signo;    /* Signal number */int      si_errno;    /* An errno value */int      si_code;     /* Signal code */int      si_trapno;   /* Trap number that causedhardware-generated signal(unused on most architectures) */pid_t    si_pid;      /* Sending process ID */uid_t    si_uid;      /* Real user ID of sending process */int      si_status;   /* Exit value or signal */clock_t  si_utime;    /* User time consumed */clock_t  si_stime;    /* System time consumed */sigval_t si_value;    /* Signal value */int      si_int;      /* POSIX.1b signal */void    *si_ptr;      /* POSIX.1b signal */int      si_overrun;  /* Timer overrun count; POSIX.1b timers */int      si_timerid;  /* Timer ID; POSIX.1b timers */void    *si_addr;     /* Memory location which caused fault */int      si_band;     /* Band event */int      si_fd;       /* File descriptor */
}

信号发送函数——高级版

  • sigqueue的函数原型
#include <signal.h>
int sigqueue(pid_t pid, int sig, const union sigval value);
union sigval {int   sival_int;void *sival_ptr;};

在这里插入图片描述
在这里插入图片描述

6. 信号携带消息编程实战(15)

  • IPC/NiceSignal.c
#include <signal.h>
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
//int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact);
//struct sigaction { ; ; ; ;};
//void (*sa_sigaction)(int, siginfo_t *, void *); /
void   handler(int signum ,siginfo_t *info,void *context)
{//信号处理程序,能够接受额外数据printf("get signum %d\n",signum);if(context != NULL){printf("get data=%d\n",info->si_int);//等同下面的int值printf("get data=%d\n",info->si_value.sival_int);//接收一个整数的消息printf("from:%d\n",info->si_pid);//发送者进程的pid//printf("get data=%s\n",(char *)context);//printf("get data=%d\n",*(int *)(info->si_value.sival_ptr));//额外数据}
}int main()
{struct sigaction act;printf("pid = %d\n",getpid());//此进程的pidact.sa_sigaction = handler;//信号处理程序,能够接受额外数据act.sa_flags = SA_SIGINFO; //be able to get message能够接受数据sigaction(SIGUSR1,&act,NULL);//信号名,指向的函数,无备份while(1);return 0;
}
  • IPC/send.c
#include <stdio.h>
#include <signal.h>
#include <sys/types.h>//getpid
#include <unistd.h>//getpid
#include <stdlib.h>//atoi system
#include <string.h>
//int sigqueue(pid_t pid, int sig, const union sigval value);
//union sigval {int sival_int;void *sival_ptr;};
int main(int argc, char **argv)
{int signum;int pid;signum = atoi(argv[1]);pid = atoi(argv[2]);union sigval value;//共用体value.sival_int = 100;//传递一个整数的消息/*value.sival_ptr = malloc(strlen("vale\0") + 1);strcpy(value.sival_ptr,"vale\0");//复制字符串到 sival_ptrfree(value.sival_ptr);*///int a = 10;//value.sival_ptr = &a;	sigqueue(pid,signum,value);//信号发送函数——高级版printf("%d,done\n",getpid());//打印自身的pidreturn 0;
}

在这里插入图片描述

  • 如果打印info->si_value.sival_ptr额外数据,会段错误
    在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

7. 信号量概述(16)

  • 信号量(semaphore)与已经介绍过的 IPC 结构不同,它是一个计数器。
  • 信号量用于实现进程间的互斥与同步,而不是用于存储进程间通信数据。
  • 临界资源:采取互斥的方式,实现共享的资源
  • 多道程序系统中存在许多进程,它们共享各种资源,然而有很多资源一次只能供一个进程使用。
  • 一次仅允许一个进程使用的资源称为临界资源。
  • 许多物理设备都属于临界资源,如输入机、打印机、磁带机等。

特点

  1. 信号量用于进程间同步,若要在进程间传递数据需要结合共享内存。
  2. 信号量基于操作系统的 PV 操作,程序对信号量的操作都是原子操作。
  3. 每次对信号量的 PV 操作不仅限于对信号量值加 1 或减 1,而且可以加减任意正整数。
  4. 支持信号量组。

原型

  • 最简单的信号量是只能取 0 和 1 的变量,这也是信号量最常见的一种形式,叫做二值信号量(Binary Semaphore)。而可以取多个正整数的信号量被称为通用信号量。
  • Linux 下的信号量函数都是在通用的信号量数组上进行操作,而不是在一个单一的二值信号量上进行操作。
#include <sys/sem.h>
// 创建或获取一个信号量组:若成功返回信号量集ID,失败返回-1
int semget(key_t key, int num_sems, int sem_flags);
// 对信号量组进行操作,改变信号量的值:成功返回0,失败返回-1
int semop(int semid, struct sembuf semoparray[], size_t numops);  
// 控制信号量的相关信息
int semctl(int semid, int sem_num, int cmd, ...);

在这里插入图片描述

8. 信号量编程实现一(17)

  • man 2 semgetman 2 semctl
  • IPC/sem.c
#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
//int semget(key_t key, int nsems, int semflg);
//int semctl(int semid, int semnum, int cmd, ...);
// int semop(int semid, struct sembuf *sops, unsigned nsops);
union semun {int              val;    /* Value for SETVAL */struct semid_ds *buf;    /* Buffer for IPC_STAT, IPC_SET */unsigned short  *array;  /* Array for GETALL, SETALL */struct seminfo  *__buf;  /* Buffer for IPC_INFO(Linux-specific) */
};int main(int argc, char const *argv[])
{key_t key;int semid;key = ftok(".",2);//信号量集合中有一个信号量  semid = semget(key, 1, IPC_CREAT|0666);//获取/创建信号量union semun initsem;initsem.val = 0;//信号量里有一把锁//操作第0个信号量   semctl(semid, 0, SETVAL, initsem);//初始化信号量//SETVAL设置信号量的值,设置为inisem                             int pid = fork();if(pid > 0){//去拿锁printf("this is father\n");//锁放回去}else if(pid == 0){printf("this is child\n");}else{printf("fork error\n");}            return 0;
}

9. 信号量编程实现二(436.18)

  • IPC/sem.c(子进程先走放回钥匙,父进程再拿钥匙走)
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/ipc.h>
#include <sys/sem.h>
//int semget(key_t key, int nsems, int semflg);
//int semctl(int semid, int semnum, int cmd, ...);
//int semop(int semid, struct sembuf *sops, unsigned nsops);
union semun {int              val;    /* Value for SETVAL */struct semid_ds *buf;    /* Buffer for IPC_STAT, IPC_SET */unsigned short  *array;  /* Array for GETALL, SETALL */struct seminfo  *__buf;  /* Buffer for IPC_INFO(Linux-specific) */
};void pGetKey(int id)//拿钥匙
{struct sembuf set;set.sem_num = 0;set.sem_op = -1;//-1把钥匙,相当于获取锁set.sem_flg=SEM_UNDO;semop(id,  &set ,1);printf("getkey\n");
}
void vPutBackKey(int id)//放回钥匙
{struct sembuf set;set.sem_num = 0;//对信号量0进行操作set.sem_op = 1;//+1把钥匙,相当于放回锁set.sem_flg=SEM_UNDO;semop(id,&set,1);//操作1个信号量printf("put back the key\n");
}int main(int argc, char const *argv[])
{key_t key;int semid;//信号量集IDkey = ftok(".",2);//信号量集合中有一个信号量  semid = semget(key,1,IPC_CREAT|0666);//获取/创建一个包含1个信号量的信号量集合,可读可写权限union semun initsem; //联合体,用于semctl初始化initsem.val = 0;//信号量的初值:0把锁//操作第0个信号量   semctl(semid,0,SETVAL,initsem);//初始化信号量//SETVAL指令模式(设置信号量的值),设置为inisem.val的值int pid = fork();if(pid > 0){pGetKey(semid);//去拿钥匙,开门,钥匙剩余0printf("this is father\n");vPutBackKey(semid);//放回钥匙,关门,钥匙剩余1semctl(semid,0,IPC_RMID);//移除钥匙}else if(pid == 0){printf("this is child\n");vPutBackKey(semid);//放回钥匙,关门,钥匙剩余1}else{printf("fork error\n");}            return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/112600.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Bootstrap的导航栏设计相关知识

Bootstrap的导航栏设计相关知识 目录 01-基础知识02-最基本的导航栏设计例子03-带下拉菜单的导航04-在导航栏中添加表单元素05-固定导航栏的位置(如固定到顶部和底部)06-设计导航栏的颜色和文本颜色 01-基础知识 导航栏是网页设计中不可缺少的部分&#xff0c;它是整个网站的…

Qt作业九

1、思维导图 2、作业 widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTimer> #include <QTime> #include <QTimerEvent> #include <QTextToSpeech>QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAME…

Linux网络-UDP/TCP协议详解

Linux网络-UDP/TCP协议详解 2023/10/17 14:32:49 Linux网络-UDP/TCP协议详解 零、前言一、UDP协议二、TCP协议 1、应答机制2、序号机制3、超时重传机制4、连接管理机制 三次握手四次挥手5、理解CLOSE_WAIT状态6、理解TIME_WAIT状态7、流量控制8、滑动窗口 丢包问题9、拥塞控制…

Linux - 还不懂 gdb 调试器?(调试软件)

前言 当前&#xff0c;我们可以使用 make/makefile 来程序化执行代码文件&#xff1b;可以使用 gcc/g 等编译器来编译代码&#xff1b;可以使用 vim 编辑器来编写代码&#xff1b;其实在 Linux 当中还有一个工具&#xff0c;可以实现调试工作&#xff0c;这个工具就是 -- gdb。…

CSS 效果 圆形里一个文字居中

效果实现源码&#xff1a; 宽度&#xff0c;高度必须确认&#xff0c;且相等 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>Title</title><style>.circlew {width: 45px;height: 45p…

PHPEXCEL解决行数超过65536不显示问题

起因自然是导出数据到excel文件时&#xff0c;数据缺少现象。 百度讲解是将xls文件另存为xlsx文件。 除了这里的原因&#xff0c;还有一点是phpExcel存在两个写入类PHPExcel_Writer_Excel2007和PHPExcel_Writer_Excel5&#xff0c;而只有PHPExcel_Writer_Excel2007支持超过65…

可信执行环境简介:ARM 的 TrustZone

目录 可信执行环境安全世界与普通世界 - 上下文切换机制ARMv7 中的异常处理ARMv8 中的异常处理 信任区商业实施TrustZone 本身的漏洞高通Trustonic 信任区强化的弱点结论声明 可信执行环境 具有信任区的 ARM 处理器实现了架构安全性每个物理处理器内核提供两个虚拟的扩展 核心…

计数排序详解

一、什么是计数排序&#xff1f; 计数排序(CountSort)是一个非基于比较的排序算法&#xff0c;该算法于1954年由 Harold H. Seward 提出。它的优势在于在对一定范围内的整数排序时&#xff0c;它的复杂度为Ο(nk)&#xff08;其中k是整数的范围&#xff09;&#xff0c;快于任何…

HCIP静态路由综合实验

题目&#xff1a; 步骤&#xff1a; 第一步&#xff1a;搭建上图所示拓扑; 第二步&#xff1a;为路由器接口配置IP地址&#xff1b; R1&#xff1a; [R1]display current-configuration intinterface GigabitEthernet0/0/0ip address 192.168.1.1 255.255.255.252 interfa…

数据分析:密度图

目前拥有的数据如图&#xff0c;三列分别对应瑕疵种类&#xff0c;对应的置信 度&#xff0c;x方向坐标。 现在想要做的事是观看瑕疵种类和置信度之间的关系。 要显示数据分布的集中程度&#xff0c;可以使用以下几种常见的图形来观察&#xff1a; 1、箱线图&#xff08;Box P…

c++数组教程

今天来讲讲数组 什么是数组&#xff1a; 我们来看一道题目&#xff1a; 【题目部分】 输入n个数,逆序输出它们. 输入 第一行一个整数n (0 < n < 60 ) 第二行n个整数 输出 一行,n个整数。 输入样例 1 5 1 6 2 8 4 输出样例 1 4 8 2 6 1 这下就难住很多人了&…

【数据可视化】—大屏数据可视化展示

【数据可视化】—大屏数据可视化展示 一、数据可视化 数据可视化的目的&#xff1a;借助于图形化工具&#xff0c;清晰有效的传达与沟通信息。 数据可视化可以把数据从冰冷的数字转换成图形&#xff0c;揭示蕴含在数据中的规律和道理。 二、 免费数据可视化库 Echarts 百度…

Kurento多对多webrtc会议搭建测试

环境ubuntu18.04 KMS版本6.13.0 多对多通信demo7.0.0 KMS运行起来后&#xff0c;通过运行它的一个个demo&#xff0c;来实现不同的功能&#xff0c;它的demo很多如下&#xff1a; https://github.com/Kurento 里面有一对一&#xff0c;多对多&#xff0c;还有一些特效的demo。…

Android13 实现有线网络和wifi共存

Android13 实现有线网络和wifi共存 文章目录 Android13 实现有线网络和wifi共存一、前言二、修改代码&#xff1a;1、ConnectivityService.java2、NetworkFactoryImpl.java3、Android11 和Android13 修改代码目录对比&#xff1a;4、如果只修改部分代码的后果只修改 Connectivi…

提升医院安全的关键利器——医院安全(不良)事件报告系统源码

医院是人们寻求医疗服务和康复的场所&#xff0c;安全是医院运营的基石。然而&#xff0c;医疗过程中不可避免地会出现不良事件&#xff0c;如药物错误、手术事故等。为了及时发现、评估和解决这些问题&#xff0c;医院安全&#xff08;不良&#xff09;事件报告系统应运而生。…

聊聊Android线程优化这件事

一、背景 在日常开发APP的过程中&#xff0c;难免需要使用第二方库和第三方库来帮助开发者快速实现一些功能&#xff0c;提高开发效率。但是&#xff0c;这些库也可能会给线程带来一定的压力&#xff0c;主要表现在以下几个方面&#xff1a; 线程数量增多&#xff1a;一些库可…

Android问题笔记 - 关于SuperNotCalledException报错异常信息的解决方案

点击跳转>Unity3D特效百例点击跳转>案例项目实战源码点击跳转>游戏脚本-辅助自动化点击跳转>Android控件全解手册点击跳转>Scratch编程案例点击跳转>软考全系列 &#x1f449;关于作者 专注于Android/Unity和各种游戏开发技巧&#xff0c;以及各种资源分享&…

互联网Java工程师面试题·Java 面试篇·第一弹

目录 1、Java 中能创建 volatile 数组吗&#xff1f; 2、volatile 能使得一个非原子操作变成原子操作吗&#xff1f; 3、volatile 修饰符的有过什么实践&#xff1f; 4、volatile 类型变量提供什么保证&#xff1f; 5、10 个线程和 2 个线程的同步代码&#xff0c;哪个更容…

使用 ClickHouse 深入了解 Apache Parquet (二)

【squids.cn】 全网zui低价RDS&#xff0c;免费的迁移工具DBMotion、数据库备份工具DBTwin、SQL开发工具等 这篇文章是我们的 Parquet 和 ClickHouse 博客系列的第二部分。在这篇文章中&#xff0c;我们将更详细地探讨 Parquet 格式&#xff0c;重点介绍使用 ClickHouse 读写文…

Xline 源码解读(四)—— CURP 状态机引擎

在上一篇源码解读的文章&#xff08;Xline 源码解读&#xff08;三&#xff09; —— CURP Server 的实现&#xff09;中&#xff0c;我们简单阐述了Xline 的 Curp Server 是如何实现的。接下来&#xff0c;就让我们话接上回&#xff0c;继续深入地来了解 Curp Server 中的一些…