pinctrl子系统 - 架构和结构体关系(四)

一,pinctrl的引入

由于SoC系统越来越复杂、集成度越来越高,SoC中pin的数量也越来越多、功能也越来越复杂,这就对如何管理、使用这些pins提出了挑战。因此,用于管理这些pins的硬件模块(pin controller)就出现了。相应地,linux kernel也出现了对应的驱动(pin controller driver)。

1,pinctrl的作用

想要pinA、B用于GPIO,需要设置IOMUX让它们连接到GPIO模块;要想让pinA、B用于I2C,需要设置IOMUX让它们连接到I2C模块,这里GPIO、I2C应该是并列的关系,它们能够使用之前,需要设置复用关系IOMUX,有时还要配置引脚,比如上拉、下拉、开漏等等。现在芯片一般动辄几百个引脚,在使用到GPIO、I2C等功能时,若一个引脚一个引脚去找对应的寄存器进行配置非常浪费时间和精力,所以内核引入了Pinctrl子系统,把引脚的复用和配置抽象出来,只需要芯片厂商把自家芯片的支持进去,就可以很方便的配置引脚。

Pinctrl:Pin Controller,顾名思义,就是用来控制引脚的:

1)引脚枚举与命名(Enumerating and naming)

2)引脚复用(Multiplexing):比如用作GPIO、I2C或其他功能

3)引脚配置(Configuration):比如上拉、下拉、开漏、驱动强度等

2,pinctrl的重要概念

Pinctrl子系统涉及2个对象:Pin controller devices、Pinctrl client devices。

Pin controller devices:提供服务,可以用它来复用引脚、配置引脚,是一个软件上的概念。

注意:Pin controller和GPIO Controller不同,前者控制的引脚可用于GPIO功能、I2C功能;后者只是把引脚配置为输入、输出等简单的功能。两者的关系是先用Pin controller把引脚配置为GPIO,再用GPIO Controler把引脚配置为输入或输出。

Pinctrl client devices:使用服务,Pinctrl系统的客户,即使用Pinctrl系统的设备。声明自己要使用哪些引脚的哪些功能,怎么配置它们。

在设备树中,上述两个对象被定义成两个节点,pin controller server节点举例如下:

//qcom AOSP pin controller device
tlmm: pinctrl@f000000 {compatible = "qcom,diwali-pinctrl";reg = <0x0F000000 0x1000000>;interrupts = <GIC_SPI 208 IRQ_TYPE_LEVEL_HIGH>;gpio-controller;#gpio-cells = <2>;interrupt-controller;#interrupt-cells = <2>;wakeup-parent = <&pdc>;qcom,gpios-reserved = <32 33 34 35>;//一个device需要用到的所有pinctrl state资源pmx_ts_active {ts_active: ts_active {mux {pins = "gpio129", "gpio51";function = "gpio";};config {pins = "gpio129", "gpio51";drive-strength = <8>;bias-pull-up;};};};pmx_ts_int_suspend {ts_int_suspend: ts_int_suspend {mux {pins = "gpio51";function = "gpio";};config {pins = "gpio51";drive-strength = <2>;bias-pull-down;};};};pmx_ts_reset_suspend {ts_reset_suspend: ts_reset_suspend {mux {pins = "gpio129";function = "gpio";};config {pins = "gpio129";drive-strength = <2>;bias-pull-down;};};};pmx_ts_release {ts_release: ts_release {mux {pins = "gpio129", "gpio51";function = "gpio";};config {pins = "gpio129", "gpio51";drive-strength = <2>;bias-disable;};};};};

pinctrl client 节点举例:

//一个device的pinctrl state配置
xxx@xx {pinctrl-names = "pmx_ts_active", "pmx_ts_suspend", "pmx_ts_release";pinctrl-0 = <&ts_active>;pinctrl-1 = <&ts_int_suspend &ts_reset_suspend>;                    pinctrl-2 = <&ts_release>;    
};

Pin controller节点的格式,没有统一的标准!!!!每家芯片都不一样,甚至上面的group、function关键字也不一定有,但是概念是有的。而client device节点的格式是统一的。

这是由于怎么去解析Pincontroller节点下的子节点完全是有芯片厂商决定,内核Pinctrl驱动框架只定义了解析节点的接口而已,而Client端是由内核代码统一管理的。

二,pin control subsystem的文件列表

1、源文件列表

我们整理linux/drivers/pinctrl目录下pin control subsystem的源文件列表如下:

文件名

描述

core.c core.h

pin control subsystem的core driver

pinctrl-utils.c pinctrl-utils.h

pin control subsystem的一些utility接口函数

pinmux.c pinmux.h

pin control subsystem的core driver(pin muxing部分的代码,也称为pinmux driver)

pinconf.c pinconf.h

pin control subsystem的core driver(pin config部分的代码,也称为pin config driver)

devicetree.c devicetree.h

pin control subsystem的device tree代码

pinctrl-xxxx.c

各种pin controller的low level driver。

在pin controller driver文档中 ,我们以SM8475的pin controller为例,描述了一个具体的low level的driver,这个driver涉及的文件包括pinctrl-diwali.c,pinctrl-diwali.h和pinctrl-msm.c,pinctrl-msm.h。

 

2、和其他内核模块接口头文件

很多内核的其他模块需要用到pin control subsystem的服务,这些头文件就定义了pin control subsystem的外部接口以及相关的数据结构。我们整理linux/include/linux/pinctrl目录下pin control subsystem的外部接口头文件列表如下:

文件名

描述

consumer.h

其他的driver要使用pin control subsystem的下列接口:

a、设置引脚复用功能

b、配置引脚的电气特性

这时候需要include这个头文件

devinfo.h

这是for linux内核的驱动模型模块(driver model)使用的接口。struct device中包括了一个struct dev_pin_info    *pins的成员,这个成员描述了该设备的引脚的初始状态信息,在probe之前,driver model中的core driver在调用driver的probe函数之前会先设定pin state

machine.h

和machine模块的接口。

 

3、Low level pin controller driver接口

我们整理linux/include/linux/pinctrl目录下pin control subsystem提供给底层specific pin controller driver的头文件列表如下:

文件名

描述

pinconf-generic.h

这个接口主要是提供给各种pin controller driver使用的,不是外部接口。

pinconf.h

pin configuration 接口

pinctrl-state.h

pin control state状态定义

pinmux.h

pin mux function接口

 

三,pin control subsystem的软件框架图

1,功能规格

pin control subsystem的主要功能包括:

(1)管理系统中所有可以控制的pin。在系统初始化的时候,枚举所有可以控制的pin,并标识这些pin。

(2)管理这些pin的复用(Multiplexing)。对于SOC而言,其引脚除了配置成普通GPIO之外,若干个引脚还可以组成一个pin group,形成特定的功能。例如pin number是{ 0, 8, 16, 24 }这四个引脚组合形成一个pin group,提供SPI的功能。pin control subsystem要管理所有的pin group。

(3)配置这些pin的特性。例如配置该引脚上的pull-up/down电阻,配置drive strength等

2,pin control subsystem在和其他linux内核模块的接口关系

pin control subsystem会向系统中的其他driver提供接口以便进行该driver的pin config和pin mux的设定。理想的状态是GPIO controll driver也只是像UART,SPI这样driver一样和pin control subsystem进行交互,但是,实际上由于各种源由(后文详述),pin control subsystem和GPIO subsystem必须有交互。

3,pin control subsystem内部block diagram

四,pinctrl子系统主要数据结构

1,pincontroller的数据结构

记住pinctrl的三大作用,有助于理解所涉及的数据结构:

引脚枚举与命名(Enumerating and naming)

引脚复用(Multiplexing):比如用作GPIO、I2C或其他功能

引脚配置(Configuration):比如上拉、下来、open drain、驱动强度等。

2,pin controller的概念和软件抽象

Kernel pinctrl core使用struct pinctrl_desc抽象一个pin controller。

2.1 Pin

kernel的pin controller子系统要想管理好系统的pin资源,第一个要搞明白的问题就是:系统中到底有多少个pin?用软件语言来表述就是:要把系统中所有的pin描述出来,并建立索引。这由上面struct pinctrl_desc结构中pins和npins来完成。

对pinctrl core来说,它只关心系统中有多少个pin,并使用自然数为这些pin编号,后续的操作,都是以这些编号为操作对象。至于编号怎样和具体的pin对应上,完全是pinctrl driver自己的事情。

因此,pinctrl driver需要根据实际情况,将系统中所有的pin组织成一个struct pinctrl_pin_desc类型的数组,该类型的定义为:

struct pinctrl_pin_desc {unsigned number;const char *name;void *drv_data;
};

 number和name完全由driver自己决定,不过要遵循有利于代码编写、有利于理解等原则。另外,为了便于driver的编写,可以在drv_data中保存driver的私有数据结构(可以包含相关的寄存器偏移等信息)。

2.2 Pin groups

在SoC系统中,有时需要将很多pin组合在一起,以实现特定的功能,例如SPI接口、I2C接口等。因此pin controller需要以group为单位,访问、控制多个pin,这就是pin groups。相应地,pin controller subsystem需要提供一些机制,来获取系统中到底有多少groups、每个groups包含哪些pins、等等。

因此,pinctrl core在struct pinctrl_ops中抽象出三个回调函数,用来获取pin groups相关信息,如下:

struct pinctrl_ops {//获取系统中pin groups的个数,后续的操作,将以相应的索引为单位(类似数组的下标,个数为数组的大小)int (*get_groups_count) (struct pinctrl_dev *pctldev);//获取指定group(由索引selector指定)的名称const char *(*get_group_name) (struct pinctrl_dev *pctldev,unsigned selector);//获取指定group的所有pins(由索引selector指定),结果保存在pins(指针数组)和num_pins(指针)中int (*get_group_pins) (struct pinctrl_dev *pctldev,unsigned selector,const unsigned **pins,unsigned *num_pins);void (*pin_dbg_show) (struct pinctrl_dev *pctldev, struct seq_file *s,unsigned offset);int (*dt_node_to_map) (struct pinctrl_dev *pctldev,struct device_node *np_config,struct pinctrl_map **map, unsigned *num_maps);void (*dt_free_map) (struct pinctrl_dev *pctldev,struct pinctrl_map *map, unsigned num_maps);
};

当然,最终的group信息是由pinctrl driver提供的,至于driver怎么组织这些group,那是driver自己的事情了(这里存储在soc data中)。

2.3 Pin multiplexing(对象是pin或者pin group)

为了照顾不同类型的产品、不同的应用场景,SoC中的很多管脚可以配置为不同的功能,例如A2和B5两个管脚,既可以当作普通的GPIO使用,又可以配置为I2C0的的SCL和SDA,也可以配置为UART5的TX和RX,这称作管脚的复用(pin multiplexing,简称为pinmux)。kernel pinctrl subsystem使用struct pinmux_ops来抽象pinmux有关的操作,如下:

struct pinmux_ops {//检查某个pin是否已作它用,用于管脚复用时的互斥(避免多个功能同时使用某个pin而不知道,导致奇怪的错误)int (*request) (struct pinctrl_dev *pctldev, unsigned offset);int (*free) (struct pinctrl_dev *pctldev, unsigned offset);//获取系统中function的个数int (*get_functions_count) (struct pinctrl_dev *pctldev);//获取指定function的名称const char *(*get_function_name) (struct pinctrl_dev *pctldev,unsigned selector);//获取指定function所占用的pin group(可以有多个)int (*get_function_groups) (struct pinctrl_dev *pctldev,unsigned selector,const char * const **groups,unsigned *num_groups);//将指定的pin group(group_selector)设置为指定的function(func_selector)int (*set_mux) (struct pinctrl_dev *pctldev, unsigned func_selector,unsigned group_selector);int (*gpio_request_enable) (struct pinctrl_dev *pctldev,struct pinctrl_gpio_range *range,unsigned offset);void (*gpio_disable_free) (struct pinctrl_dev *pctldev,struct pinctrl_gpio_range *range,unsigned offset);int (*gpio_set_direction) (struct pinctrl_dev *pctldev,struct pinctrl_gpio_range *range,unsigned offset,bool input);bool strict;
};

pinctrl core不关心function的具体形态,只要求pinctrl driver将SoC的所有可能的function枚举出来(格式自行定义,不过需要有编号、名称等内容),并注册给pinctrl core。后续pinctrl core将会通过function的索引,访问、控制相应的function。

2.4 Pin configuration(对象是pin或者pin group)

2.1和2.2中介绍了pinctrl subsystem中的操作对象(pin or pin group)以及抽象方法。嵌入式系统的工程师都知道,SoC中的管脚有些属性可以配置,例如上拉、下拉、高阻、驱动能力等。pinctrl subsystem使用pin configuration来封装这些功能,具体体现在struct pinconf_ops数据结构中,如下:

struct pinconf_ops {
#ifdef CONFIG_GENERIC_PINCONFbool is_generic;
#endif//获取指定pin(管脚的编号,由2.1中pin的注册信息获得)当前配置,保存在config指针中(配置的具体含义,只有pinctrl driver自己知道,下同)int (*pin_config_get) (struct pinctrl_dev *pctldev,unsigned pin,unsigned long *config);//设置指定pin的配置(可以同时配置多个config,具体意义要由相应pinctrl driver解释)int (*pin_config_set) (struct pinctrl_dev *pctldev,unsigned pin,unsigned long *configs,unsigned num_configs);//获取或者设置指定pin group的配置项int (*pin_config_group_get) (struct pinctrl_dev *pctldev,unsigned selector,unsigned long *config);//获取或者设置指定pin group的配置项int (*pin_config_group_set) (struct pinctrl_dev *pctldev,unsigned selector,unsigned long *configs,unsigned num_configs);void (*pin_config_dbg_show) (struct pinctrl_dev *pctldev,struct seq_file *s,unsigned offset);void (*pin_config_group_dbg_show) (struct pinctrl_dev *pctldev,struct seq_file *s,unsigned selector);void (*pin_config_config_dbg_show) (struct pinctrl_dev *pctldev,struct seq_file *s,unsigned long config);
};

kernel pinctrl subsystem并不关心configuration的具体内容是什么,它只提供pin configuration get/set的通用机制,至于get到的东西,以及set的东西,到底是什么,是pinctrl driver自己的事情。

3,pinctrl client的数据结构
3.1 device结构体

设备节点要么被转换为platform_device,或者其他结构体(比如i2c_client),但是里面都会有一个device结构体:

3.2 pin control state holder

每个device结构体里都有一个dev_pin_info结构体,用来保存设备的pinctrl信息,为了方便管理pin control state,我们又提出了一个pin control state holder的概念,用来管理一个设备的所有的pin control状态 -- struct pinctrl ,系统中的每一个需要和pin control subsystem进行交互的设备在进行设定之前都需要首先获取这个句柄。而属于该设备的所有的状态都是挂入到一个链表中,链表头就是pin control state holder的states成员。

参考链接:

pinctrl 子系统介绍_pinctrl子系统_kenny_wju的博客-CSDN博客

linux内核中的GPIO系统之(2):pin control subsystem

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/108896.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++基础——结构体

1 概述 结构体是用户自定义的数据类型&#xff0c;可以包含不同的数据类型 2 定义和使用 定义一个学生的结构体 //结构体定义 struct student {//成员列表string name; //姓名int age; //年龄int score; //分数 }stu3; //结构体变量创建方式3 int main() {//结构体…

ChatGPT 的工作原理学习 难以理解 需要先找个容易的课来跟下。

ChatGPT 的工作原理 传统搜超搜引擎原理&#xff1a;蜘蛛抓取和数据收集&#xff0c;用户交互查找。 ChatGPT 的工作原理&#xff1a;数据收集称为预训练&#xff0c;用户响应阶段称为推理。 ChatGPT是一种基于自然语言处理技术的人工智能模型&#xff0c;它的工作原理建立在…

AWS SAP-C02教程4--身份与联合身份认证

AWS的账号和权限控制一开始接触的时候觉得很复杂,不仅IAM、Identiy Federation、organization,还有Role、Policy等。但是其实先理清楚基本一些概念,然后在根据实际应用场景去理解设计架构,你就会很快掌握这一方面的内容。 AWS的账号跟其它一些云或者说一些SAAS产品的账号没…

c# xml 参数配置表的使用

使用简介 实际使用界面 配置表管理界面 进入 using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Threading.Tasks; using System.Windows.Forms;…

关于电路的输入阻抗与输出阻抗的理解

一、输入阻抗 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U&#xff0c;测量输入端的电流I&#xff0c;则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端&#xff0c;这个电阻的阻值&#xff0c;就是输入阻抗。 输入阻抗跟一个普通的电抗元件…

用GDB调试程序的栈帧

2023年10月17日&#xff0c;周二晚上 目录 练习GDB栈帧调试功能的程序 GDB栈帧方面的指令 调试效果 练习GDB栈帧调试功能的程序 斐波那契数列 #include <iostream>int factorial(int n) {if (n < 1) {return 1;} else {return n * factorial(n - 1);} }int main(…

Redis数据结构之listpack

前言 当数据量较小时&#xff0c;Redis 会优先考虑用 ziplist 来存储 hash、list、zset&#xff0c;这么做可以有效的节省内存空间&#xff0c;因为 ziplist 是一块连续的内存空间&#xff0c;它采用一种紧凑的方式来存储元素。但是它也有缺点&#xff0c;比如查找的时间复杂度…

单例模式——数据库连接池设计Java代码实现

以下是一个简单的Java代码示例&#xff0c;演示了如何使用单例模式来设计一个数据库连接池&#xff1a; import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;import java.util.ArrayList;import java.util.List; public class DatabaseCo…

nginx基础概念

1.正向代理&#xff1a;代理的是客户端&#xff0c;一般有明确的访问对象 比如&#xff1a;我现在通过v-p-n去访问YouTube&#xff0c;那么就是正向代理。 2.反向代理&#xff1a;代理的是服务器 最常见的就是web中&#xff0c;nginx去代理一群后端的服务器。 3.负载均衡&…

Flume 整合 Kafka

1.背景 先说一下,为什么要使用 Flume + Kafka? 以实时流处理项目为例,由于采集的数据量可能存在峰值和峰谷,假设是一个电商项目,那么峰值通常出现在秒杀时,这时如果直接将 Flume 聚合后的数据输入到 Storm 等分布式计算框架中,可能就会超过集群的处理能力,这时采用 Kaf…

制造企业如何做好MES管理系统需求分析

随着制造业的不断发展&#xff0c;制造企业对于生产过程的管理需求日益增长。为了提高生产效率和质量&#xff0c;越来越多的制造企业开始关注MES生产管理系统的需求分析。本文将从以下几个方面探讨制造企业如何做好MES管理系统需求分析。 一、明确需求 在进行MES管理系统需求…

Unity DOTS Component概述

最近DOTS终于发布了正式的版本, 我们来分享以下DOTS里面地几个关键概念&#xff0c;方便大家上手学习掌握Unity DOTS开发。 Unity DOTS 中Entity作为实体不直接去存放数据&#xff0c;而是将数据以一个个的组件为载体来存放起来。每个Entity会得到一些不同的ComponentData的组…

Vue 网络处理 - axios 异步请求的使用,请求响应拦截器

目录 一、axiox 1.1、axios 简介 1.2、axios 基本使用 1.2.1、下载核心 js 文件. 1.2.2、发送 GET 异步请求 1.2.3、发送 POST 异步请求 1.2.4、发送 GET、POST 请求最佳实践 1.3、请求响应拦截器 1.3.1、拦截器解释 1.3.2、请求拦截器的使用 1.3.3、响应拦截器的使用…

基于Spring Boot的LDAP开发全教程

写在前面 协议概述 LDAP&#xff08;轻量级目录访问协议&#xff0c;Lightweight Directory Access Protocol)是一种用于访问和维护分布式目录服务的开放标准协议,是一种基于TCP/IP协议的客户端-服务器协议&#xff0c;用于访问和管理分布式目录服务&#xff0c;如企业内部的…

Go的函数选项模式

使用场景 在go的开发过程中&#xff0c;有的时候我们常常会碰到这样的场景&#xff1a;new一个结构体的时候参数不确定&#xff0c;但是我们又需要根据我们的需求来进行结构体的初始化赋值&#xff0c;那么碰到这样场景的时候&#xff0c;我们除了为不同的初始化方法写多个结构…

基于SSM框架的安全教育平台

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;Vue 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#xff1a;是 目录…

微信小程序仿苹果负一屏由弱到强的高斯模糊

进入下面小程序可以体验效果&#xff0c;然后进入更多。查看模糊效果 一、创建小程序组件 二、代码 wxml: <view class"topBar-15"></view> <view class"topBar-14"></view> <view class"topBar-13"></view&…

Kotlin中布尔类型、字符类型、字符串类型和数组类型

在Kotlin中&#xff0c;布尔类型、字符类型、字符串类型和数组类型是常用的数据类型之一。下面我将对它们进行详细描述并提供示例代码。 布尔类型&#xff08;Boolean&#xff09;&#xff1a; 布尔类型表示逻辑值&#xff0c;只有两个可能的取值&#xff1a;true和false。在K…

JavaScript中的特殊数据类型和其具体用法

在实际开发中&#xff0c;还可以使用其他数据类型&#xff0c;如正则表达式&#xff08;RegExp&#xff09;、Map、Set等&#xff0c;以及自定义的复杂数据结构。 以下是一些常见的特殊数据类型和它们的具体用法&#xff1a; 1&#xff1a;正则表达式&#xff08;RegExp&…