opensl学习——base16编码解码、base64编码解码、ASCII码表、扩展ASCII码

文章目录

  • ASCII表概述
    • base家族简单说明
  • Hex(十六进制)编码、Base32编码、Base64编码、base256编码
  • base16编码与解码
  • base64编码概述
    • 转换过程
    • 不足 3 字节处理方法
      • 例子一,不足3字节,只有一个字节
      • 例子二,不足3字节,只有两个字节
    • base64示例代码1
      • 代码分析 acl_base64_encode
      • 代码分析 acl_base64_decode
  • base64示例代码2——openssl 实现
  • Base16与Base64优劣对比
  • 扩展的ASCII码
  • ASCII 编码一览表
    • 控制字符
    • 可显示字符

ASCII表概述

ASCII(American Standard Code for Information Interchange,美国信息互换标准代码)是一套基于拉丁字母的字符编码,共收录了 128 个字符,用一个字节就可以存储,它等同于国际标准 ISO/IEC 646。

ASCII 编码于 1967 年第一次发布,最后一次更新是在 1986 年,迄今为止共收录了 128 个字符,包含了基本的拉丁字母(英文字母)、阿拉伯数字(也就是 1234567890)、标点符号(,.!等)、特殊符号(@#$%^&等)以及一些具有控制功能的字符(往往不会显示出来)。

ASCII 编码是美国人给自己设计的,他们并没有考虑欧洲那些扩展的拉丁字母,也没有考虑韩语和日语,我大中华几万个汉字更是不可能被重视。计算机也是美国人发明的,起初使用的就是 ASCII 码,只能显示英文字符。各个国家为了让本国公民也能正常使用计算机,开始效仿 ASCII 开发自己的字符编码,例如 ISO/IEC 8859(欧洲字符集)、shift_Jis(日语字符集)、GBK(中文字符集)等。

base家族简单说明

ASCII 是用128(2^8)个字符,对二进制数据进行编码的方式,
base64 编码是用64(2^6)个字符,对二进制数据进行编码的方式
base32 就是用32(2^5)个字符,对二进制数据进行编码的方式
base16 就是用16(2^4)个字符,对二进制数据进行编码的方式

Hex(十六进制)编码、Base32编码、Base64编码、base256编码

Hex(十六进制)编码、Base32编码和Base64编码可以将原始数据编码为可视化字符串。它们的原理是一样的,都是将指定位数的原始数据编码为特定字符空间中的一个字符。

  • Hex:也叫作Base16编码;每4位编码为一个字符, 2 4 = 16 {2}^{4}=16 24=16 字符空间为"0123456789abcdef"或"0123456789ABCDEF";不区分大小写,其中的字母可以编码为大写也可以编码为小写,同时解码也不区分大小写,应该能对大小写的HEX字符串都能正确解码;
  • Base32:每5位编码为一个字符, 2 5 = 32 {2}^{5}=32 25=32 字符空间为"ABCDEFGHIJKLMNOPQRSTUVWXYZ234567",大小写敏感;
  • Base64:每6位编码为一个字符, 2 6 = 64 {2}^{6}=64 26=64 字符空间为"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/",大小写敏感;
  • Base256: 每8位编码为一个字符,也就是8位一个字节。因为 2 8 = 256 {2}^{8}=256 28=256 所以,可以把我们普通的编码叫base256。

base16编码与解码

Base16编码使用16个ASCII字符对任何数据进行编码,Base16与Base64的实现原理类似,同样是将原数据二进制形式取指定位数转换为ASCII码。首先获取数据的二进制形式,将其串联起来,每4个比特为一组进行切分,每一组内的4个比特可转换到指定的16个ASCII字符中的一个,将转换后的ASCII字符连接起来,就是编码后的数据。

base16编码与解码示例

#include <iostream>using namespace std;
static const char BASE16_ENC_TAB[] = "0123456789ABCDEF";
// '0'~'9' =>48~57		'A'~'F' => 65~70
static const char BASE16_DEC_TAB[128] = {-1,								//0-1,-1,-1,-1,-1, -1,-1,-1,-1,-1, //1-10-1,-1,-1,-1,-1, -1,-1,-1,-1,-1, //11-20-1,-1,-1,-1,-1, -1,-1,-1,-1,-1, //21-30-1,-1,-1,-1,-1, -1,-1,-1,-1,-1, //31-40-1,-1,-1,-1,-1, -1,-1, 0, 1, 2, //41-503, 4, 5, 6, 7,  8, 9,-1,-1,-1, //51-60-1,-1,-1,-1,10, 11,12,13,14,15  //61-70 'A'-'F'
};int Base16Encode(const unsigned char* in, int size, char* out)
{for (int i = 0; i < size; ++i) {char h = in[i] >> 4; //移位丢弃低位char l = in[i] & 0x0F; //0000 1111 去掉高位out[i * 2] = BASE16_ENC_TAB[h];out[i * 2 + 1] = BASE16_ENC_TAB[l];}//base16 转码后空间扩大一倍 4位转成一个字符 1个字节转成两个字符return size * 2;
}int Base16Decode(const string& in, unsigned char* out)
{//将两个字符拼成一个字节 B2E2CAD442617365313600for (int i = 0; i < in.size(); i +=2){unsigned char ch = in[i];	//高位转换的字符 'B'=> 66 : 10unsigned char cl = in[i + 1]; //低位转换的字符 '2'=> 50 : 2unsigned char h = BASE16_DEC_TAB[ch]; //转换成原来的值unsigned char l = BASE16_DEC_TAB[cl];//两个4位拼成一个字节 (8位)// 1000 >> 4		1000 0000// 0001				0000 0001//				   |1000 0001out[i / 2] = (int)(h << 4 | l);}return in.size() / 2;
}int main(int argc, char* argv[])
{cout << " Test Base16" << endl;const unsigned char data[] = "测试Base16";int len = sizeof(data);char out1[1024] = { 0 };cout << data << endl;int re = Base16Encode(data, len, out1);unsigned char out2[1024] = { 0 };re = Base16Decode(out1, out2);cout << re << ":" << out2 << endl;return 0;
}

base64编码概述

Base64 是一种基于 64 个可打印字符来表示二进制数据的表示方法,由于 2^6=64,所以每 6 个比特为一个单元,对应某个可打印字符。

Base64 常用于在通常处理文本数据的场合,表示、传输、存储一些二进制数据,包括 MIME 的电子邮件及 XML 的一些复杂数据。

Base64 编码要求把 3 个 8 位字节(3*8=24)转化为 4 个 6 位的字节(4*6=24),之后在 6 位的前面补两个 0,形成 8 位一个字节的形式。 如果剩下的字符不足 3 个字节,则用 0 填充,输出字符使用 =,因此编码后输出的文本末尾可能会出现 1 或 2 个 =。

为了保证所输出的编码位可读字符,Base64 制定了一个编码表,以便进行统一转换。编码表的大小为 2^6=64,这也是 Base64 名称的由来。

Base64 中的可打印字符包括26个大写字母 A-Z、26个小写字母a-z、数字 0-9,这样共有 62 个字符,此外两个可打印符号在不同的系统中而不同。

以下是 Base64 编码的基本步骤:

  • 将数据划分为 3 个字节一组(24位)。
  • 将每个字节转换为 8 位二进制形式。
  • 将 24 位数据按照 6 位一组进行划分,得到 4 个 6 位的组。
  • 将每个 6 位的组转换为对应的 Base64 字符。
  • 如果数据不足 3 字节,进行填充。
  • 将所有转换后的 Base64 字符连接起来,形成最终的编码结果。

解码 Base64 编码的过程与编码相反,将每个 Base64 字符转换为对应的6位二进制值,然后将这些 6 位值组合成原始的二进制数据。

Base64 编码具有以下特点:

  • 编码后的数据长度总是比原始数据长约 1/3。
  • 编码后的数据可以包含 A-Z、a-z、0-9 和两个额外字符的任意组合。
  • Base64 编码是一种可逆的编码方式,可以通过解码还原原始数据。

转换过程

编码 “Man” 的结果为 TWFu,转换过程如下:
在这里插入图片描述

不足 3 字节处理方法

例子一,不足3字节,只有一个字节

在这里插入图片描述
已知末尾文本为A,对应原始数据二进制为01000001,一个字节,不满足转换要求。转换要求必须要有三个字节,这里只有一个字节,所以要进行填充。从上图可知,填充分两种情况,A对应原始数据二进制的前六位可以正常转换,后两位之后填充0,现在已经两个单元,但是四个单元才可以转换。这里根据Base64编码规则用两个等于号来填充。这样就保证了数据内容不变,长度可观测。

例子二,不足3字节,只有两个字节

在这里插入图片描述
已知末尾文本为B,C。对应原始数据二进制为0100001001000011,两个字节,不满足转换要求。转换要求必须要有三个字节,这里只有两个字节,所以要进行填充。

base64示例代码1

//
// Created by oceanstar on 2021/8/13.
//
#include <cstdlib>
#include "acl_base64.h"namespace oceanstar{static const unsigned char to_b64[] ="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";static const unsigned char un_b64[] = {255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 62,  255, 255, 255, 63,52,  53,  54,  55,  56,  57,  58,  59,  60,  61,  255, 255, 255, 255, 255, 255,255, 0,   1,   2,   3,   4,   5,   6,   7,   8,   9,   10,  11,  12,  13,  14,15,  16,  17,  18,  19,  20,  21,  22,  23,  24,  25,  255, 255, 255, 255, 255,255, 26,  27,  28,  29,  30,  31,  32,  33,  34,  35,  36,  37,  38,  39,  40,41,  42,  43,  44,  45,  46,  47,  48,  49,  50,  51,  255, 255, 255, 255, 255,255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255};#define UNSIG_CHAR_PTR(x) ((const unsigned char *)(x))unsigned char *acl_base64_encode( const char *in, int len){const unsigned char *cp;int     count, size = len * 4 /3;unsigned char * out = (unsigned char *)malloc(size + 1);int out_index = 0;for (cp = UNSIG_CHAR_PTR(in), count = len; count > 0; count -= 3, cp += 3) {out[out_index++] = to_b64[cp[0] >> 2];if (count > 1) {out[out_index++] = to_b64[(cp[0] & 0x3) << 4 | cp[1] >> 4];if (count > 2) {out[out_index++] = to_b64[(cp[1] & 0xf) << 2 | cp[2] >> 6];out[out_index++] = to_b64[cp[2] & 0x3f];}else{out[out_index++] = to_b64[(cp[1] & 0xf) << 2];out[out_index++] = '=';break;}} else {out[out_index++] = to_b64[(cp[0] & 0x3) << 4];out[out_index++] = '=';out[out_index++] = '=';break;}}out[out_index] = 0;return out;}unsigned char *acl_base64_decode(const char *in, int len){const unsigned char *cp;int     count;int     ch0;int     ch1;int     ch2;int     ch3;/** Sanity check.*/if (len % 4)return (NULL);#define INVALID		0xffunsigned char * out = (unsigned char *)malloc(len + 1);int out_index = 0;for (cp = UNSIG_CHAR_PTR(in), count = 0; count < len; count += 4) {if ((ch0 = un_b64[*cp++]) == INVALID|| (ch1 = un_b64[*cp++]) == INVALID)return (0);out[out_index++] = ch0 << 2 | ch1 >> 4;if ((ch2 = *cp++) == '=')break;if ((ch2 = un_b64[ch2]) == INVALID)return (0);out[out_index++] = ch1 << 4 | ch2 >> 2;if ((ch3 = *cp++) == '=')break;if ((ch3 = un_b64[ch3]) == INVALID)return (0);out[out_index++] = ch2 << 6 | ch3;}out[out_index] = 0;return out;}}

代码分析 acl_base64_encode

编码过程简单来说就是8 x 3===> 6 x 4的过程。

// 当count等于3时,执行的是
out[out_index++] = to_b64[cp[0] >> 2];
out[out_index++] = to_b64[(cp[0] & 0x3) << 4 | cp[1] >> 4]; // 0x3 ---> 0000 0011
out[out_index++] = to_b64[(cp[1] & 0xf) << 2 | cp[2] >> 6]; // 0xf ---> 0000 1111
out[out_index++] = to_b64[cp[2] & 0x3f];	// 0x3f ---> 0011 1111// 当count等于2时,执行的是
out[out_index++] = to_b64[cp[0] >> 2];
out[out_index++] = to_b64[(cp[0] & 0x3) << 4 | cp[1] >> 4];
out[out_index++] = to_b64[(cp[1] & 0xf) << 2];
out[out_index++] = '=';// 当count等于1时,执行的是
out[out_index++] = to_b64[cp[0] >> 2];
out[out_index++] = to_b64[(cp[0] & 0x3) << 4];
out[out_index++] = '=';
out[out_index++] = '=';

代码分析 acl_base64_decode

解码过程简单来说就是6 x 4===> 8 x 3的过程。

//当满足4个单元时
out[out_index++] = ch0 << 2 | ch1 >> 4;
out[out_index++] = ch1 << 4 | ch2 >> 2;
out[out_index++] = ch2 << 6 | ch3;

base64示例代码2——openssl 实现

#include <openssl/sha.h>
#include <openssl/pem.h>
#include <openssl/bio.h>
#include <openssl/evp.h>
int base64_encode(char *in_str, int in_len, char *out_str) {BIO *b64, *bio;BUF_MEM *bptr = NULL;size_t size = 0;if (in_str == NULL || out_str == NULL)return -1;b64 = BIO_new(BIO_f_base64());bio = BIO_new(BIO_s_mem());bio = BIO_push(b64, bio);BIO_write(bio, in_str, in_len);BIO_flush(bio);BIO_get_mem_ptr(bio, &bptr);memcpy(out_str, bptr->data, bptr->length);out_str[bptr->length-1] = '\0';size = bptr->length;BIO_free_all(bio);return size;
}

Base16与Base64优劣对比

  • Base16使用了更小的字典,Base16包含16个字符(0-9A-F),Base64包含65个字符(a-zA-Z0-9+/=或a-zA-Z0-9-_=)。

  • Base16编码规则是4比特为一分组,Base64编码规则是6比特为一分组。

  • 由于编码规则的不同,Base16正好可以完全切分数据,无需补位;Base64无法完全切分数据,需要使用=补位, 补位的个数在{0,1,2}范围之内。

  • Base16编码后数据会膨胀一倍,Base64编码后数据会膨胀1/3。

  • Base16编码后数据无特殊字符,而Base64包含特殊字符。Base64在URL传输等场景下需要尤为注意特殊字符的处理。

扩展的ASCII码

ASCII码值在128-255间的ASCII码称作扩展的ASCII码。

ASCII 码使用指定的7 位或8 位二进制数组合来表示128 或256 种可能的字符。标准ASCII 码也叫基础ASCII码,使用7 位二进制数(剩下的1位二进制为0)来表示所有的大写和小写字母,数字0 到9、标点符号, 以及在美式英语中使用的特殊控制字符。

其中:0~31及127(共33个)是控制字符或通信专用字符(其余为可显示字符),如控制符:LF(换行)、CR(回车)、FF(换页)、DEL(删除)、BS(退格)、BEL(响铃)等。

32~126(共95个)是字符(32是空格),其中48~57为0到9十个阿拉伯数字。

65~90为26个大写英文字母,97~122号为26个小写英文字母,其余为一些标点符号、运算符号等。

后128个称为扩展ASCII码。许多基于x86的系统都支持使用扩展(或“高”)ASCII。扩展ASCII 码允许将每个字符的第8 位用于确定附加的128 个特殊符号字符、外来语字母和图形符号。

ASCII 编码一览表

ASCII 编码一览表

控制字符

二进制十进制十六进制字符/缩写解释
00000000000NUL (NULL)空字符
00000001101SOH (Start Of Headling)标题开始
00000010202STX (Start Of Text)正文开始
00000011303ETX (End Of Text)正文结束
00000100404EOT (End Of Transmission)传输结束
00000101505ENQ (Enquiry)请求
00000110606ACK (Acknowledge)回应/响应/收到通知
00000111707BEL (Bell)响铃
00001000808BS (Backspace)退格
00001001909HT (Horizontal Tab)水平制表符
00001010100ALF/NL(Line Feed/New Line)换行键
00001011110BVT (Vertical Tab)垂直制表符
00001100120CFF/NP (Form Feed/New Page)换页键
00001101130DCR (Carriage Return)回车键
00001110140ESO (Shift Out)不用切换
00001111150FSI (Shift In)启用切换
000100001610DLE (Data Link Escape)数据链路转义
000100011711DC1/XON (Device Control 1/Transmission On)设备控制1/传输开始
000100101812DC2 (Device Control 2)设备控制2
000100111913DC3/XOFF (Device Control 3/Transmission Off)设备控制3/传输中断
000101002014DC4 (Device Control 4)设备控制4
000101012115NAK (Negative Acknowledge)无响应/非正常响应/拒绝接收
000101102216SYN (Synchronous Idle)同步空闲
000101112317ETB (End of Transmission Block)传输块结束/块传输终止
000110002418CAN (Cancel)取消
000110012519EM (End of Medium)已到介质末端/介质存储已满/介质中断
00011010261ASUB (Substitute)替补/替换
00011011271BESC (Escape)逃离/取消
00011100281CFS (File Separator)文件分割符
00011101291DGS (Group Separator)组分隔符/分组符
00011110301ERS (Record Separator)记录分离符
00011111311FUS (Unit Separator)单元分隔符
011111111277FDEL (Delete)删除

可显示字符

二进制十进制十六进制字符/缩写解释
001000003220(Space)空格
001000013321!
001000103422"
001000113523#
001001003624$
001001013725%
001001103826&
001001113927
001010004028(
001010014129)
00101010422A*
00101011432B+
00101100442C,
00101101452D-
00101110462E.
00101111472F/
0011000048300
0011000149311
0011001050322
0011001151333
0011010052344
0011010153355
0011011054366
0011011155377
0011100056388
0011100157399
00111010583A:
00111011593B;
00111100603C<
00111101613D=
00111110623E>
00111111633F?
010000006440@
010000016541A
010000106642B
010000116743C
010001006844D
010001016945E
010001107046F
010001117147G
010010007248H
010010017349I
01001010744AJ
01001011754BK
01001100764CL
01001101774DM
01001110784EN
01001111794FO
010100008050P
010100018151Q
010100108252R
010100118353S
010101008454T
010101018555U
010101108656V
010101118757W
010110008858X
010110018959Y
01011010905AZ
01011011915B[
01011100925C\
01011101935D]
01011110945E^
01011111955F_
011000009660`
011000019761a
011000109862b
011000119963c
0110010010064d
0110010110165e
0110011010266f
0110011110367g
0110100010468h
0110100110569i
011010101066Aj
011010111076Bk
011011001086Cl
011011011096Dm
011011101106En
011011111116Fo
0111000011270p
0111000111371q
0111001011472r
0111001111573s
0111010011674t
0111010111775u
0111011011876v
0111011111977w
0111100012078x
0111100112179y
011110101227Az
011110111237B{
011111001247C|
011111011257D}
011111101267E~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/108459.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构】排序--选择排序(堆排序)

目录 一 堆排序 二 直接选择排序 一 堆排序 堆排序(Heapsort)是指利用堆积树&#xff08;堆&#xff09;这种数据结构所设计的一种排序算法&#xff0c;它是选择排序的一种。它是 通过堆来进行选择数据。 需要注意的是排升序要建大堆&#xff0c;排降序建小堆。 直接选择排…

家居行业如何打破获客困局?2023重庆建博会现场,智哪儿AI营销第一课给出了答案

10月12日-14日&#xff0c;2023中国&#xff08;重庆&#xff09;建筑及装饰材料博览会&#xff08;简称&#xff1a;2023中国重庆建博会&#xff09;正在重庆国际博览中心如火如荼地进行。「智哪儿」携手2023中国重庆建博会主办方共同主办的《2023家居行业AI营销第一课&#x…

910数据结构(2013年真题)

算法设计题 问题1 已知元素数据类型为整数的顺序表SL&#xff08;a1,a2,…,am,b1,b2,…,bn&#xff09;&#xff0c;试设计算法将SL中元素的两部分互换为&#xff08;b1,b2,…,bn,a1,a2,…,am&#xff09;。要求&#xff1a;不能使用额外的数组空间。 &#xff08;1&#xff…

深入理解强化学习——智能体的类型:有模型强化学习智能体与免模型强化学习智能体

分类目录&#xff1a;《深入理解强化学习》总目录 根据智能体学习的事物不同&#xff0c;我们可以把智能体进行归类。基于价值的智能体&#xff08;Value-based agent&#xff09;显式地学习价值函数&#xff0c;隐式地学习它的策略。策略是其从学到的价值函数里面推算出来的。…

软件测试:遇到bug怎么分析,这篇文章值得一看

为什么定位问题如此重要&#xff1f; 可以明确一个问题是不是真的“bug” 很多时候&#xff0c;我们找到了问题的原因&#xff0c;结果发现这根本不是bug。原因明确&#xff0c;误报就会降低多个系统交互&#xff0c;可以明确指出是哪个系统的缺陷&#xff0c;防止“踢皮球”&…

万界星空科技/生产制造管理MES系统/开源MES/免费MES

一、 开源系统概述&#xff1a; 万界星空科技免费MES、开源MES、商业开源MES、市面上最好的开源MES、MES源代码、免费MES、免费智能制造系统、免费排产系统、免费排班系统、免费质检系统、免费生产计划系统、免费仓库管理系统、免费出入库管理系统、免费可视化数字大屏。 万界…

C语言:冒泡排序

C语言 基础开发----目录 冒泡排序 1. 原理 对一个有n个数据的数组进行遍历&#xff0c;依次对相邻两个数据进行比较大小&#xff0c;若大的数据在前面则交换位置&#xff08;升序&#xff09;&#xff0c;完成一次遍历后数组中最大的数据到了数组的末尾位置&#xff0c;就象水…

【王道代码】【2.2顺序表】d1

关键字&#xff1a; 删除最小值最后位补齐&#xff1b;逆置&#xff1b;删除所有x&#xff1b;删除值为s到t区间的元素

FDTD Solutions笔记

FDTD Solutions笔记 目录使用流程实例 目录 使用流程 实例 材料条件 步骤 基底 2. 添加规则膜层 3. 添加仿真区 解释&#xff1a; 仿真区为&#xff08;0,0&#xff09;&#xff0c;x方向为0.4&#xff0c;y方向是1 解释&#xff1a; 一般先用低精度进行计算 解释&#xff1a…

数据结构上机实验——栈和队列的实现、栈和队列的应用、进制转换、约瑟夫环问题

文章目录 栈和队列上机实验1.要求2.栈的实现&#xff08;以顺序栈为例&#xff09;3.队列的实现&#xff08;以顺序队列为例&#xff09;4.利用栈实现进制转换5.利用队列解决约瑟夫环问题6.全部源码Stack.hQueue.htest.cpp 栈和队列上机实验 1.要求 1.利用栈的基本操作实现将任…

ubuntu20.04下Kafka安装部署及基础使用

Ubuntu安装kafka基础使用 kafka 安装环境基础安装下载kafka解压文件修改配置文件启动kafka创建主题查看主题发送消息接收消息 工具测试kafka Assistant 工具连接测试基础连接连接成功查看topic查看消息查看分区查看消费组 Idea 工具测试基础信息配置信息当前消费组发送消息消费…

微信小程序里配置less

介绍 在微信小程序里&#xff0c;样式文件的后缀名都是wxss&#xff0c;这导致一个问题&#xff0c;就是页面样式过多的时候&#xff0c;要写很多的类名来包裹&#xff0c;加大了工作量&#xff0c;还很有可能会写错样式。这时可以配置一个less&#xff0c;会大大提高代码编辑…

《小狗钱钱》阅读笔记(三)

目录 还会有各种各样的人取笑你&#xff0c;但也会有更多的人认可你 有的时候&#xff0c;疯狂的念头比普通的小目标更容易达到。当你定下大目标的时候&#xff0c;就意味着你必须付出比别人多得多的努力。 可是请你告诉我&#xff0c;你为什么不能因为做了一件自己喜欢的事…

framework通信机制—LiveData使用方法及原理

LiveData是一种可观察的数据存储器类。与常规的可观察类不同&#xff0c;LiveData 具有生命周期感知能力&#xff0c;意指它遵循其他应用组件&#xff08;如 activity、fragment 或 service&#xff09;的生命周期。这种感知能力可确保 LiveData 仅更新处于活跃生命周期状态的应…

模型量化笔记--对称量化和非对称量化

1–量化映射 量化映射的通用公式为: r S ( q − Z ) r S(q - Z) rS(q−Z) 其中r表示量化前数据的真实值&#xff0c;S表示缩放因子&#xff0c;q表示量化后的数值&#xff0c;Z表示零点 2–非对称量化 非对称量化需要一个偏移量Z来完成零点的映射&#xff0c;即量化前的零…

pg嵌套子查询

1.概念 查询里面还有查询 进阶版&#xff1a;关联子查询 2.相关运算符补充 in/all/any all&#xff1a;表中的所有内容遍历一边&#xff0c;等价与max some/any&#xff1a;表中任何一个&#xff0c;等价与min

汉得欧洲x甄知科技 | 携手共拓全球化布局,助力出海中企数智化发展

HAND Europe 荣幸获得华为云颁发的 GrowCloud 合作伙伴奖项&#xff0c;进一步巩固了其在企业数字化领域的重要地位。于 2023 年 10 月 5 日&#xff0c;HAND Europe 参加了华为云荷比卢峰会&#xff0c;并因其在全球拓展方面的杰出贡献而荣获 GrowCloud 合作伙伴奖项的认可。 …

C++新经典 | C++ 查漏补缺(内存)

目录 一、new和delete 1.new类对象时&#xff0c;括号问题 2.new做了什么事 3.delete做了什么事 4.new与malloc的区别 5.delete与free的区别 二、分配及释放内存 三、重载operator new和operator delete操作符 1.重载类中的operator new和operator delete操作符 &…

vue+element实现电商商城礼品代发网,商品、订单管理

一、项目效果图 1.首页 2.登录 版本2&#xff1a; 3.注册 4.找回密码 5.立即下单 6.商品详情 7.个人中心-工作台 8.个人中心-订单列表 9.订单中心-包裹列表 10.个人中心-工单管理 11.我的钱包 12.实名认证 13.升级vip 14.个人中心-推广赚钱 二、关键源码 1.路由配置 impor…

【机器学习】PyTorch-MNIST-手写字识别

文章目录 前言完成效果一、下载数据集手动下载代码下载MNIST数据集&#xff1a; 二、 展示图片三、DataLoader数据加载器四、搭建神经网络五、 训练和测试第一次运行&#xff1a; 六、优化模型第二次优化后运行&#xff1a; 七、完整代码八、手写板实现输入识别功能 前言 注意…