竞赛 深度学习OCR中文识别 - opencv python

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 文本区域检测网络-CTPN
  • 4 文本识别网络-CRNN
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习OCR中文识别系统 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

在日常生产生活中有大量的文档资料以图片、PDF的方式留存,随着时间推移 往往难以检索和归类 ,文字识别(Optical Character
Recognition,OCR )是将图片、文档影像上的文字内容快速识别成为可编辑的文本的技术。

高性能文档OCR识别系统是基于深度学习技术,综合运用Tensorflow、CNN、Caffe
等多种深度学习训练框架,基于千万级大规模文字样本集训练完成的OCR引擎,与传统的模式识别的技术相比,深度学习技术支持更低质量的分辨率、抗干扰能力更强、适用的场景更复杂,文字的识别率更高。

本项目基于Tensorflow、keras/pytorch实现对自然场景的文字检测及OCR中文文字识别。

2 实现效果

公式检测
在这里插入图片描述
纯文字识别

在这里插入图片描述

3 文本区域检测网络-CTPN

对于复杂场景的文字识别,首先要定位文字的位置,即文字检测。

简介
CTPN是在ECCV
2016提出的一种文字检测算法。CTPN结合CNN与LSTM深度网络,能有效的检测出复杂场景的横向分布的文字,效果如图1,是目前比较好的文字检测算法。由于CTPN是从Faster
RCNN改进而来,本文默认读者熟悉CNN原理和Faster RCNN网络结构。
在这里插入图片描述
相关代码

def main(argv):pycaffe_dir = os.path.dirname(__file__)parser = argparse.ArgumentParser()# Required arguments: input and output.parser.add_argument("input_file",help="Input txt/csv filename. If .txt, must be list of filenames.\If .csv, must be comma-separated file with header\'filename, xmin, ymin, xmax, ymax'")parser.add_argument("output_file",help="Output h5/csv filename. Format depends on extension.")# Optional arguments.parser.add_argument("--model_def",default=os.path.join(pycaffe_dir,"../models/bvlc_reference_caffenet/deploy.prototxt.prototxt"),help="Model definition file.")parser.add_argument("--pretrained_model",default=os.path.join(pycaffe_dir,"../models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel"),help="Trained model weights file.")parser.add_argument("--crop_mode",default="selective_search",choices=CROP_MODES,help="How to generate windows for detection.")parser.add_argument("--gpu",action='store_true',help="Switch for gpu computation.")parser.add_argument("--mean_file",default=os.path.join(pycaffe_dir,'caffe/imagenet/ilsvrc_2012_mean.npy'),help="Data set image mean of H x W x K dimensions (numpy array). " +"Set to '' for no mean subtraction.")parser.add_argument("--input_scale",type=float,help="Multiply input features by this scale to finish preprocessing.")parser.add_argument("--raw_scale",type=float,default=255.0,help="Multiply raw input by this scale before preprocessing.")parser.add_argument("--channel_swap",default='2,1,0',help="Order to permute input channels. The default converts " +"RGB -> BGR since BGR is the Caffe default by way of OpenCV.")parser.add_argument("--context_pad",type=int,default='16',help="Amount of surrounding context to collect in input window.")args = parser.parse_args()mean, channel_swap = None, Noneif args.mean_file:mean = np.load(args.mean_file)if mean.shape[1:] != (1, 1):mean = mean.mean(1).mean(1)if args.channel_swap:channel_swap = [int(s) for s in args.channel_swap.split(',')]if args.gpu:caffe.set_mode_gpu()print("GPU mode")else:caffe.set_mode_cpu()print("CPU mode")# Make detector.detector = caffe.Detector(args.model_def, args.pretrained_model, mean=mean,input_scale=args.input_scale, raw_scale=args.raw_scale,channel_swap=channel_swap,context_pad=args.context_pad)# Load input.t = time.time()print("Loading input...")if args.input_file.lower().endswith('txt'):with open(args.input_file) as f:inputs = [_.strip() for _ in f.readlines()]elif args.input_file.lower().endswith('csv'):inputs = pd.read_csv(args.input_file, sep=',', dtype={'filename': str})inputs.set_index('filename', inplace=True)else:raise Exception("Unknown input file type: not in txt or csv.")# Detect.if args.crop_mode == 'list':# Unpack sequence of (image filename, windows).images_windows = [(ix, inputs.iloc[np.where(inputs.index == ix)][COORD_COLS].values)for ix in inputs.index.unique()]detections = detector.detect_windows(images_windows)else:detections = detector.detect_selective_search(inputs)print("Processed {} windows in {:.3f} s.".format(len(detections),time.time() - t))# Collect into dataframe with labeled fields.df = pd.DataFrame(detections)df.set_index('filename', inplace=True)df[COORD_COLS] = pd.DataFrame(data=np.vstack(df['window']), index=df.index, columns=COORD_COLS)del(df['window'])# Save results.t = time.time()if args.output_file.lower().endswith('csv'):# csv# Enumerate the class probabilities.class_cols = ['class{}'.format(x) for x in range(NUM_OUTPUT)]df[class_cols] = pd.DataFrame(data=np.vstack(df['feat']), index=df.index, columns=class_cols)df.to_csv(args.output_file, cols=COORD_COLS + class_cols)else:# h5df.to_hdf(args.output_file, 'df', mode='w')print("Saved to {} in {:.3f} s.".format(args.output_file,time.time() - t))

CTPN网络结构
在这里插入图片描述

4 文本识别网络-CRNN

CRNN 介绍
CRNN 全称为 Convolutional Recurrent Neural Network,主要用于端到端地对不定长的文本序列进行识别,不用

图来自文章:一文读懂CRNN+CTC文字识别

整个CRNN网络结构包含三部分,从下到上依次为:

  1. CNN(卷积层),使用深度CNN,对输入图像提取特征,得到特征图;
  2. RNN(循环层),使用双向RNN(BLSTM)对特征序列进行预测,对序列中的每个特征向量进行学习,并输出预测标签(真实值)分布;
  3. CTC loss(转录层),使用 CTC 损失,把从循环层获取的一系列标签分布转换成最终的标签序列。

CNN
卷积层的结构图:
在这里插入图片描述

这里有一个很精彩的改动,一共有四个最大池化层,但是最后两个池化层的窗口尺寸由 2x2 改为 1x2,也就是图片的高度减半了四次(除以 2^4
),而宽度则只减半了两次(除以2^2),这是因为文本图像多数都是高较小而宽较长,所以其feature
map也是这种高小宽长的矩形形状,如果使用1×2的池化窗口可以尽量保证不丢失在宽度方向的信息,更适合英文字母识别(比如区分i和l)。

CRNN 还引入了BatchNormalization模块,加速模型收敛,缩短训练过程。

输入图像为灰度图像(单通道);高度为32,这是固定的,图片通过 CNN
后,高度就变为1,这点很重要;宽度为160,宽度也可以为其他的值,但需要统一,所以输入CNN的数据尺寸为 (channel, height,
width)=(1, 32, 160)。

CNN的输出尺寸为 (512, 1, 40)。即 CNN 最后得到512个特征图,每个特征图的高度为1,宽度为40。

Map-to-Sequence
我们是不能直接把 CNN 得到的特征图送入 RNN 进行训练的,需要进行一些调整,根据特征图提取 RNN 需要的特征向量序列。

在这里插入图片描述

现在需要从 CNN 模型产生的特征图中提取特征向量序列,每一个特征向量(如上图中的一个红色框)在特征图上按列从左到右生成,每一列包含512维特征,这意味着第
i 个特征向量是所有的特征图第 i 列像素的连接,这些特征向量就构成一个序列。

由于卷积层,最大池化层和激活函数在局部区域上执行,因此它们是平移不变的。因此,特征图的每列(即一个特征向量)对应于原始图像的一个矩形区域(称为感受野),并且这些矩形区域与特征图上从左到右的相应列具有相同的顺序。特征序列中的每个向量关联一个感受野。

如下图所示:
在这里插入图片描述

这些特征向量序列就作为循环层的输入,每个特征向量作为 RNN 在一个时间步(time step)的输入。

RNN
因为 RNN 有梯度消失的问题,不能获取更多上下文信息,所以 CRNN 中使用的是 LSTM,LSTM
的特殊设计允许它捕获长距离依赖,不了解的话可以看一下这篇文章 对RNN和LSTM的理解。

LSTM
是单向的,它只使用过去的信息。然而,在基于图像的序列中,两个方向的上下文是相互有用且互补的。将两个LSTM,一个向前和一个向后组合到一个双向LSTM中。此外,可以堆叠多层双向LSTM,深层结构允许比浅层抽象更高层次的抽象。

这里采用的是两层各256单元的双向 LSTM 网络:
在这里插入图片描述

通过上面一步,我们得到了40个特征向量,每个特征向量长度为512,在 LSTM 中一个时间步就传入一个特征向量进行分

我们知道一个特征向量就相当于原图中的一个小矩形区域,RNN
的目标就是预测这个矩形区域为哪个字符,即根据输入的特征向量,进行预测,得到所有字符的softmax概率分布,这是一个长度为字符类别数的向量,作为CTC层的输入。

因为每个时间步都会有一个输入特征向量 x^T ,输出一个所有字符的概率分布 y^T ,所以输出为 40 个长度为字符类别数的向量构成的后验概率矩阵。

如下图所示:
在这里插入图片描述

然后将这个后验概率矩阵传入转录层。
CTC loss
这算是 CRNN 最难的地方,这一层为转录层,转录是将 RNN
对每个特征向量所做的预测转换成标签序列的过程。数学上,转录是根据每帧预测找到具有最高概率组合的标签序列。

端到端OCR识别的难点在于怎么处理不定长序列对齐的问题!OCR可建模为时序依赖的文本图像问题,然后使用CTC(Connectionist Temporal
Classification, CTC)的损失函数来对 CNN 和 RNN 进行端到端的联合训练。

相关代码

    def inference(self, inputdata, name, reuse=False):"""Main routine to construct the network:param inputdata::param name::param reuse::return:"""with tf.variable_scope(name_or_scope=name, reuse=reuse):# centerlized datainputdata = tf.divide(inputdata, 255.0)#1.特征提取阶段# first apply the cnn feature extraction stagecnn_out = self._feature_sequence_extraction(inputdata=inputdata, name='feature_extraction_module')#2.第二步,  batch*1*25*512  变成 batch * 25 * 512# second apply the map to sequence stagesequence = self._map_to_sequence(inputdata=cnn_out, name='map_to_sequence_module')#第三步,应用序列标签阶段# third apply the sequence label stage# net_out width, batch, n_classes# raw_pred   width, batch, 1net_out, raw_pred = self._sequence_label(inputdata=sequence, name='sequence_rnn_module')return net_out

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/107630.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

易天光通信推出100G BIDI ER光模块最新解决方案

随着数字信息时代的快速发展,网络通信技术的迅猛进步成为推动科技创新和产业升级的重要引擎之一。作为光通信行业的新秀,近期易天光通信推出了全新的100G BIDI ER1 Lite光模块和100G BIDI LR1 Lite光模块,助力崭新的未来网络建设。 易天光通…

C#网络爬虫实例:使用RestSharp获取Reddit首页的JSON数据并解析

Reddit 是一个非常受欢迎的分享社交新闻聚合网站,用户可以在上面发布和内容。我们的目标是抓取 Reddit 首页的数据 JSON,以便进一步分析和使用。 C#技术概述:C#是一种流行的编程语言,它具有流畅流畅的特点,非常适合开发…

【Java】字符串中的数据排序

需求:有一个字符串:“97,16,36,18,50”,请写程序实现最终输出结果是:“16,18,36,50,97” 思路: 将字符串按照逗号分割成一…

centos7安装erlang23.3.4.11及rabbitmq3.9.16版本

rpm包有系统版本要求,el是Red Hat Enterprise Linux(EL)的缩写。 EL7是Red Hat 7.x,Centos 7.x EL8是Red Hat 8.x, Centos 8.x 所以我们在安装erlang及rabbitmq时需要选择与自己的服务器相对应的rpm包 # rabbitmq的rpm安装包 https://github.com/rabbi…

基于 Debian 稳定分支发行版的Zephix 7 发布

导读Zephix 是一个基于 Debian 稳定版的实时 Linux 操作系统。它可以完全从可移动媒介上运行,而不触及用户系统磁盘上存储的任何文件。 Zephix 是一个基于 Debian 稳定版的实时 Linux 操作系统。它可以完全从可移动媒介上运行,而不触及用户系统磁盘上存…

DDoS攻击与CC攻击:网络安全的两大挑战

在今天的数字时代,网络安全问题越来越突出,其中分布式拒绝服务攻击(DDoS攻击)和HTTP洪泛攻击(CC攻击)是两种常见的网络威胁。本文将探讨这两种攻击的概念、原理以及如何有效地应对它们。 1. DDoS攻击&…

c++设计模式

单例模式 若有class A,整个程序中保证A类只有一个对象。 1.为了保证只有一个实例,那么就不能让A类随意创建对象,也就不能调用构造函数,那么就需要把构造函数私有化。 2.需要私有的静态当前类的指针成员变量。 私有:保证无法在类外…

【计算机毕设选题推荐】幼儿园管理系统SpringBoot+SSM+Vue

前言:我是IT源码社,从事计算机开发行业数年,专注Java领域,专业提供程序设计开发、源码分享、技术指导讲解、定制和毕业设计服务 项目名 基于SpringBoot的幼儿园管理系统 技术栈 SpringBootSSMVueMySQLMaven 文章目录 一、幼儿园管…

删除有序数组的重复项-------题解报告

题目:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 题解: 个人的想法比较粗糙,因为是递增数组,所以如果有相同的数组,必然相邻,所以只需要判断相邻元素是否相等,相…

【Docker 内核详解】namespace 资源隔离(四):Mount namespace Network namespace

【Docker 内核详解 - namespace 资源隔离】系列包含: namespace 资源隔离(一):进行 namespace API 操作的 4 种方式namespace 资源隔离(二):UTS namespace & IPC namespacenamespace 资源隔…

自定义Flink kafka连接器Decoding和Serialization格式

前言 使用kafka连接器时: 1.作为source端时,接受的消息报文的格式并不是kafka支持的格式,这时则需要自定义Decoding格式。 2.作为sink端时,期望发送的消息报文格式并非kafka支持的格式,这时则需要自定义Serializati…

python中使用xml.dom.minidom模块读取解析xml文件

python中可以使用xml.dom.minidom模块读取解析xml文件 xml.dom.minidom模块应该是内置模块不用下载安装 对于一个xml文件来说比如这个xml文件的内容为如下 <excel version"1.0" author"huangzhihui"><table id"1"><colum id&qu…

第四节(1):EXCEL中判断一个WORD文件是否被打开

《VBA信息获取与处理》教程(10178984)是我推出第六套教程&#xff0c;目前已经是第一版修订了。这套教程定位于最高级&#xff0c;是学完初级&#xff0c;中级后的教程。这部教程给大家讲解的内容有&#xff1a;跨应用程序信息获得、随机信息的利用、电子邮件的发送、VBA互联网…

控制一个游戏对象的旋转和相机的缩放

介绍 这段代码是一个Unity游戏开发脚本&#xff0c;它用于控制一个游戏对象的旋转和相机的缩放。以下是代码的主要功能&#xff1a; 控制游戏对象的旋转&#xff1a; 通过按下Q键和W键&#xff0c;用户可以选择以逆时针或顺时针方向绕游戏对象的Y轴进行旋转。旋转角度和速度可…

js中nan有什么用,如何判断

在JavaScript中&#xff0c;NaN表示“不是一个数字”&#xff0c;当一个数值无法被解析为数字时会返回NaN。NaN通常表示一个错误的或非法的数值操作结果。例如&#xff0c;当尝试将非数字字符串解析为数字时&#xff0c;将返回NaN。 NaN具有以下特点&#xff1a; NaN不等于任何…

shell命令以及运行原理

Linux严格意义上说的是一个操作系统&#xff0c;我们称之为“核心&#xff08;kernel&#xff09;“ &#xff0c;但我们一般用户&#xff0c;不能直接使用kernel。 而是通过kernel的“外壳”程序&#xff0c;也就是所谓的shell&#xff0c;来与kernel沟通。如何理解&a…

Ubuntu 20.04装机

安装搜狗输入法&#xff1a; Ubuntu 20.04安装sogou输入法_ubuntu20.04 搜狗输入法-CSDN博客a 安装chrome浏览器&#xff1a; ubuntu20.04安装Chrome浏览器-CSDN博客 安装nvidia驱动 ubuntu20安装nvidia驱动-CSDN博客 安装cudnn ubuntu 20 安装 CUDA-CSDN博客

【LeetCode】22. 括号生成

1 问题 数字 n 代表生成括号的对数&#xff0c;请你设计一个函数&#xff0c;用于能够生成所有可能的并且 有效的 括号组合。 示例 1&#xff1a; 输入&#xff1a;n 3 输出&#xff1a;[“((()))”,“(()())”,“(())()”,“()(())”,“()()()”] 示例 2&#xff1a; 输…

rabbitMQ的知识点

RabbitMQ是一种消息队列软件&#xff0c;它实现了高度可靠的消息传递机制。RabbitMQ支持多种消息协议&#xff0c;包括AMQP、STOMP、MQTT等&#xff0c;比较灵活。以下是一些rabbitmq的知识点&#xff1a; 1. 消息队列&#xff1a;消息队列是一种分布式系统中广泛使用的通信模…

ESP32-IPS彩屏ST7789-Arduino-简单驱动

目的&#xff1a; 使ESP32能够驱动点亮ST7789显示屏 前提条件&#xff1a; ESP32 ST7789 &#xff08;240 x240&#xff0c;IPS&#xff09; 杜邦线 Arduino 过程&#xff1a; 0x00--接线 0x01--驱动&#xff1a; 彩屏驱动库 针对不同的彩屏驱动芯片&#xff0c;常用的 Arduino…