Pandas时序数据分析实践—概述

在这里插入图片描述
时序数据,作为一种时间上有序的数据形式,无疑是我们日常生活中最常见的数据类型之一。它记录了事件、现象或者过程随时间的变化,是对于许多实际场景的忠实反映。而在众多时序数据的应用领域中,跑步训练记录莫过于是一项令人着迷的话题。

跑步,作为一项简单又充满挑战的运动,吸引着众多跑者不断挑战自我,突破极限。从晨跑的第一缕阳光,到夜跑的璀璨星空,每一次脚步都是一段关于自己的时刻记录。随着跑步的发展,越来越多的跑者开始利用技术手段记录自己的训练数据,而这些数据正是构成了一份宝贵的时序数据集。

在这个时序数据集中,我们不仅能够了解每次跑步的时间、距离、配速等基本信息,还可以追踪每段训练的进步与成长。我们可以看到每天清晨的体能状态,记录自己在慢跑、短跑、长跑中的表现,了解不同训练方式对身体的影响。这些数据的背后,蕴含着跑者不断努力和坚持的足迹,也见证着训练计划的调整和优化。

而在这场时序数据的探索与分析中,Pandas 无疑是我们最得力的工具之一。Pandas 是 Python 中一个强大的数据处理库,它提供了灵活高效的数据结构和数据操作方法,让我们能够轻松地对时序数据进行各种操作、聚合、分析和可视化。

在本系列文章中,我们将带您一起探索 Pandas 在时序数据分析中的应用。我们将从如何加载和处理跑步训练记录开始,逐步深入探讨数据的清洗、转换、聚合和可视化。我们将学习如何从大量的时序数据中提取有价值的信息,识别趋势和周期性,评估训练效果,甚至利用机器学习方法预测未来的表现。

无论您是一位跑步爱好者,还是对时序数据分析感兴趣的数据科学家,本系列文章都将为您揭示时序数据分析的魅力。让我们一起踏上这段充满数据洞察力的跑步之旅,用数据为您的跑步训练增色添彩。让 Pandas 引领我们探索时序数据的无限可能!

1. Pandas

Pandas 是 Python 语言的一个强大的开源数据分析和数据处理扩展程序库,建立在 NumPy 之上,提供了更高级、更灵活的数据结构和数据处理工具。它是 Python 数据科学生态系统中最重要的库之一,广泛应用于数据清洗、转换、处理和分析等领域。Pandas 名字衍生自术语 “panel data”(面板数据)和 “Python data analysis”(Python 数据分析)。下面对 Pandas 的主要特点和功能进行系统的介绍:

  • 数据结构: Pandas 提供了两种主要的数据结构:Series 和 DataFrame。

    • Series:类似于一维数组,每个元素都有对应的索引,可以是任意数据类型。
    • DataFrame:类似于二维表格,是由多个 Series 组成的数据结构,每列可以有不同的数据类型,同时具有行和列的索引。
  • 数据导入与导出: Pandas 支持从各种数据源(如 CSV、Excel、数据库、JSON、HTML 等)中导入数据,并能将数据导出为不同的文件格式。

  • 数据清洗和转换: Pandas 提供了丰富的数据清洗和转换功能,包括缺失值处理、重复值处理、数据类型转换、字符串操作、日期处理等。

  • 数据选择和过滤: Pandas 允许根据条件对数据进行选择和过滤,支持布尔索引、位置索引、标签索引等多种方式。

  • 数据聚合和分组: Pandas 提供了灵活的数据聚合和分组操作,可以进行统计计算、分组汇总、透视表等复杂数据分析。

  • 数据合并和拼接: Pandas 可以方便地将多个数据集进行合并和拼接,支持多种连接方式(如内连接、外连接、左连接、右连接)。

  • 时间序列处理: Pandas 对时间序列数据有很好的支持,可以进行时间索引、时间频率转换、滚动窗口计算等。

  • 数据可视化: Pandas 结合 Matplotlib 和 Seaborn 等库,提供了简单易用的数据可视化功能,帮助用户快速生成各种图表。

  • 高级应用: 学习一些高级的 Pandas 应用技巧,如使用 apply 函数、使用自定义函数进行数据处理等。

  • 性能优化: 了解如何优化 Pandas 的性能,包括避免使用循环,使用向量化操作,使用合适的数据类型等,提高数据处理效率。

Pandas 的优势在于它提供了高效灵活的数据结构和操作方法,使得数据处理变得简单快捷。无论是进行简单的数据转换,还是进行复杂的数据分析,Pandas 都能为数据科学家和分析师提供强大的支持。同时,Pandas 社区非常活跃,不断有新的功能和改进被加入进来,保持着它的领先地位。

2. Jupyter

Jupyter 是一个非常流行的交互式计算和数据科学环境,它支持多种编程语言,但最常用的是 Python。Jupyter 的名字由三个编程语言的缩写组成:Julia、Python 和 R,它们都是在 Jupyter 中的支持语言。主要特点包括:

  • 交互性: Jupyter 提供了一个交互式的计算环境,用户可以一边编写代码,一边查看运行结果。代码可以逐行执行,方便调试和快速尝试不同的方法。

  • Notebook: Jupyter Notebook 是 Jupyter 的主要界面。它是一个 Web 应用程序,允许用户创建和共享包含代码、文本、图像和交互式图表的文档。Notebook 支持 Markdown 和 LaTeX 语法,可以创建富文本的笔记和报告。

  • 多语言支持: Jupyter 支持多种编程语言,包括 Python、R、Julia、Scala、Haskell 等。用户可以根据需要选择合适的内核来运行代码。

  • 数据可视化: Jupyter 集成了许多数据可视化工具,例如 Matplotlib、Plotly、Seaborn 等,可以轻松地在 Notebook 中展示图表和图像。

  • 数据处理和分析: Jupyter 非常适合进行数据处理和分析工作,可以使用 Pandas、NumPy 等数据科学库进行数据处理,支持交互式数据分析和数据可视化。

  • 教育和研究: Jupyter 在教育和研究领域得到广泛应用。教师和学生可以在 Notebook 中编写代码、做实验、记录笔记,研究人员可以用它来展示和共享研究成果。

  • 扩展性: Jupyter 可以通过插件和扩展来增强功能,例如支持其他编程语言、增加新的图表库等。

  • 云端支持: 许多云计算平台支持 Jupyter,用户可以在云端运行 Jupyter Notebook,不需要在本地安装任何软件。

总的来说,Jupyter 是一个非常强大、灵活和便捷的数据科学工具,它为数据科学家、程序员和研究人员提供了一个交互式的环境,方便他们进行数据分析、数据可视化和实验性编程。

3. 开发环境安装

在 Windows 10 环境下的安装和配置步骤:

3.1. 安装 Python:

访问 Python 官网(https://www.python.org/downloads/windows/)下载适用于 Windows 的 Python 安装程序。

打开安装程序,勾选 “Add Python x.x to PATH” 选项,点击 “Install Now” 完成安装。请注意,x.x 是你下载的 Python 版本号。

详细安装过程可以参考《Pandas高级数据分析快速入门之一——Python开发环境篇》内容。

3.2. 安装 Jupyter 和 Pandas:

打开命令提示符(CMD)或 PowerShell,输入以下命令分别安装 Jupyter 和 Pandas:

pip install jupyter
pip install pandas

注意:由于网络原因,境外可能速度较慢,推荐使用国内的镜像,例如清华镜像(https://pypi.tuna.tsinghua.edu.cn/simple),命令变为:

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pandas

3.3. 使用与配置 Jupyter Notebook

3.3.1. 配置Jupyter Notebook

首先,为Jupyter建立工作目录,例如使用”D:\01workspace\Jupyter_notework“为工作目录(自行手工创建)。

接着,运行产生系统配置文件命令,配置工作目录为系统可以识别(默认在python的命令目录下)。

python目录\Scripts>jupyter-notebook --generate-config

Writing default config to: C:\Users\Administrator\.jupyter\jupyter_notebook_config.py

在这里插入图片描述
注:Administrator,或你所使用的其他操作系统用户下。

用文本编辑器,打开“jupyter_notebook_config.py”文件,查找“notebook_dir”参数:c.NotebookApp.notebook_dir = ‘D:\01workspace\Jupyter_notework’

3.3.2. 启动 Jupyter Notebook

在命令提示符或 PowerShell 中,输入以下命令启动 Jupyter Notebook:

jupyter notebook

在这里插入图片描述
会自动打开一个浏览器窗口,显示 Jupyter Notebook 的界面。

注:Jupyter工具jupyter-notebook.exe在“python路径/Scripts”文件夹下,为了方便使用,可以在桌面创建快捷方式

3.3.3. 使用 Jupyter Notebook:

在 Jupyter Notebook 界面中,可以看到文件浏览器和 Notebook 列表。点击右上角的 “New”,选择 “Python 3” 创建一个新的 Python Notebook。在新的 Notebook 中,你可以编写代码、运行代码,并使用 Pandas 进行数据分析。

在这里插入图片描述

注意事项:

确保你的系统已经正确安装了 Python 和 pip,可以在命令行中输入 python --version 和 pip --version 来检查版本。
如果在安装 Jupyter 和 Pandas 时遇到权限问题,可以尝试使用管理员权限运行命令提示符或 PowerShell。

通过以上步骤,你可以在 Windows 10 环境下成功安装并配置 Jupyter 和 Pandas,开始使用它们进行数据分析和处理。

参考:

肖永威. Pandas高级数据分析快速入门之一——Python开发环境篇. CSDN博客. 2021.09

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/10643.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

亲测解决Git inflate: data stream error (incorrect data check)

Git inflate: data stream error (incorrect data check) error: unable to unpack… 前提是你的repository在github等服务器或者其他路径有过历史备份/副本,不要求是最新版本的,只要有就可能恢复你做的所有工作。 执行git fsck --full检查损坏的文件 在…

《TCP IP网络编程》第十一章

第 11 章 进程间通信 11.1 进程间通信的基本概念 通过管道实现进程间通信: 进程间通信,意味着两个不同的进程中可以交换数据。下图是基于管道(PIPE)的进程间通信的模型: 可以看出,为了完成进程间通信&…

代码随想录 DAY45

class Solution { public: int climbStairs(int n) { vector<int>dp(n1,0); dp[0]1; for(int j0;j<n;j){ for(int i1;i<2;i){ if(j>i) dp[j]dp[j-i]; } } return dp[n]; } }; 这个题还是说想清楚 这个因为有1和2 阶的情况 所以i就是从1开始遍历 然后小于等于…

ConcurrentHashMap

ConcurrentHashMap 同步容器类是 Java 5 增加的一个线程安全的哈希表。对与多线程的操作&#xff0c;介于 HashMap 与 Hashtable 之间。内部采用“锁分段”机制替代 Hashtable 的独占锁。进而提高性能。 jdk8 弃用了分段锁&#xff0c;使用 cassynchronized 放弃分段锁的原因&a…

SQL基础语法 | 增删改查、分组、排序、limit

Shell命令框和Navicat联合使用 一、数据库层面 创建数据库 postgres# CREATE DATABASE runoobdb;查看数据库 postgres# \l选择数据库 postgres# \c runoobdb删除数据库 postgres# DROP DATABASE runoobdb;二、表格层面 创建表格 CREATE TABLE table_name(字段名称 字段数据类型…

【NLP】一个使用PyTorch实现图像分类的迁移学习实例

一个使用PyTorch实现图像分类的迁移学习实例 1. 导入模块2. 加载数据3. 模型处理4. 训练及验证模型5. 微调6. 其他代码 在特征提取中&#xff0c;可以在预先训练好的网络结构后修改或添加一个简单的分类器&#xff0c;然后将源任务上预先训练好的网络作为另一个目标任务的特征提…

数据决定AIGC的高度,什么又决定着数据的深度?

有人曾言&#xff0c;数据决定人工智能发展的天花板。深以为然。 随着ChatGPT等AIGC应用所展现出的强大能力&#xff0c;人们意识到通用人工智能的奇点正在来临&#xff0c;越来越多的企业开始涌入这条赛道。在AIGC浪潮席卷全球之际&#xff0c;数据的重要性也愈发被业界所认同…

HTML5 的离线储存怎么使用,工作原理

TML5提供了一种称为离线储存&#xff08;Offline Storage&#xff09;的功能&#xff0c;它允许网页在离线时缓存和存储数据&#xff0c;以便用户可以在没有网络连接的情况下访问这些数据。离线储存是通过使用Web Storage API或者应用程序缓存&#xff08;Application Cache&am…

[SQL挖掘机] - 字符串函数 - lower

介绍: lower函数是mysql中的一个字符串函数&#xff0c;其作用是将给定的字符串转换为小写形式。它接受一个字符串作为参数&#xff0c;并返回一个新的字符串&#xff0c;其中所有的字母字符均被转换为小写形式。 使用lower函数可以帮助我们在字符串处理中实现标准化和规范化…

MySQL基础(四)数据库备份

目录 前言 一、概述 1.数据备份的重要性 2.造成数据丢失的原因 二、备份类型 &#xff08;一&#xff09;、物理与逻辑角度 1.物理备份 2.逻辑备份 &#xff08;二&#xff09;、数据库备份策略角度 1.完整备份 2.增量备份 三、常见的备份方法 四、备份&#xff08…

通讯录系统

目录 通讯录系统头文件&#xff1a; 通讯录系统Test&#xff1a; 通讯录系统函数源代码&#xff1a; 通讯录系统头文件&#xff1a; #define _CRT_SECURE_NO_WARNINGS 1 #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert…

python 操作sqlite3数据库

sqlite3 import sqlite3 db sqlite3.connect("c:/tmp/test2.db") #连接数据库&#xff0c;若不存在则自动创建 #文件夹 c:/tmp 必须事先存在,connect不会创建文件夹 cur db.cursor() #获取光标&#xff0c;要操作数据库一般要通过光标进行 sql CREATE TABLE if n…

vue实现flv格式视频播放

公司项目需要实现摄像头实时视频播放&#xff0c;flv格式的视频。先百度使用flv.js插件实现&#xff0c;但是两个摄像头一个能放一个不能放&#xff0c;没有找到原因。&#xff08;开始两个都能放&#xff0c;后端更改地址后不有一个不能放&#xff09;但是在另一个系统上是可以…

Blocking Analyzer 1.5 For MySQL 8.0

快速获取MySQL 8.0的blocking信息 1&#xff09;super_read_only 2&#xff09;read_only 3&#xff09;innodb lock waits 4&#xff09;schema table lock waits 5&#xff09;data lock waits 6&#xff09;metadata locks 7&#xff09;data locks 通过以上信息快速…

wangEditor初探

1、前言 现有的Quill比较简单&#xff0c;无法满足业务需求&#xff08;例如SEO的图片属性编辑需求&#xff09; Quill已经有比较长的时间没有更新了&#xff0c;虽然很灵活&#xff0c;但是官方demo都没有一个。 业务前期也没有这块的需求&#xff0c;也没有考虑到这块的扩展…

Xilinx P4使用方法--架构篇

Xilinx P4使用方法--架构篇 1 P4 IP架构2 P4接口说明3 P4使用方法3.1 P4程序3.2 命令文件3.3 数据流文件本文主要介绍Xilinx P4的基本架构、接口和仿真测试文件。 1 P4 IP架构 P4 IP的架构如下图所示,主要由解析器(Parser)、匹配-动作引擎(Match-Action Engine)、逆解析器(De…

接口自动化测试-Python+Requests+Pytest+YAML+Allure配套撸码(详细)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 接口自动化框架&a…

[Java] 观察者模式简述

模式定义&#xff1a;定义了对象之间的一对多依赖&#xff0c;让多个观察者对象同时监听某一个主题对象&#xff0c;当主题对象发生变化时&#xff0c;他的所有依赖者都会收到通知并且更新 依照这个图&#xff0c;简单的写一个代码 package Section1.listener;import java.ut…

前端程序员入门:先学Vue3还是Vue2?

一、前言 对于新手来说&#xff0c;学习Vue.js框架时往往会有这样一个疑问&#xff1a;应该先学习Vue2还是直接学习Vue3&#xff1f;在回答这个问题之前&#xff0c;我们先简单介绍一下Vue.js框架。 Vue.js是一个轻量级的MVVM(Model-View-ViewModel)框架&#xff0c;它以数据驱…

el-table表格自动滚动

实现效果如下&#xff1a; 功能点&#xff1a; 1. 当表格内容超出时&#xff0c;自动滚动&#xff0c;滚动到最后一条之后在从头滚动。 2. 表格中的数据会定时刷新&#xff0c;刷新后数据更新。 3. 鼠标移入表格中&#xff0c;停止滚动&#xff1b;移出后&#xff0c;继续滚…