普冉PY32系列(八) GPIO模拟和硬件SPI方式驱动无线收发芯片XN297LBW

目录

  • 普冉PY32系列(一) PY32F0系列32位Cortex M0+ MCU简介
  • 普冉PY32系列(二) Ubuntu GCC Toolchain和VSCode开发环境
  • 普冉PY32系列(三) PY32F002A资源实测 - 这个型号不简单
  • 普冉PY32系列(四) PY32F002A/003/030的时钟设置
  • 普冉PY32系列(五) 使用JLink RTT代替串口输出日志
  • 普冉PY32系列(六) 通过I2C接口驱动PCF8574扩展的1602LCD
  • 普冉PY32系列(七) SOP8,SOP10,SOP16封装的PY32F002A/PY32F003管脚复用
  • 普冉PY32系列(八) GPIO模拟和硬件SPI方式驱动无线收发芯片XN297LBW

XN297LBW

XN297LBW 是一个SOP8封装的2.4GHz频段无线收发芯片, 价格在1元左右, 适用于低成本应用. 虽然磐启已经发布了 XN297L 的下一代产品 PAN1026, 但是市面上基本上见不到后者的身影, 零售能买到的还是 XN297L.

生产商是上海磐启, 产品页地址: https://wiki.panchip.com/ble-lite/2-4g-t-rx/xn297l_series/

磐启对 XN297L 的产品介绍: “工作在 2.400~2.483GHz 世界通用 ISM 频段的单片无线收发芯片, XN297L采用嵌入式基带协议引擎, 适用于超低功耗无线应用. 采用 GFSK 调制, 可配置频率信道, 输出功率和接口数据速率等射频参数. XN297L 支持 2Mbps, 1Mbps 和 250Kbps 的数据速率. 对于长距离应用, 输出功率可以调节高达 11dBm, 对于短距离和超低功率应用, 输出功率可以低至-23dBm.”

XN297LBW 主要特性

  • 无线
    • 通信频段:2.400GHz~2.483GHz
    • 数据速率:2Mbps,1Mbps,250Kbps
    • 调制方式:GFSK
  • 发射器
    • 输出功率:11, 9, 5, -1, -10 or -23dBm
    • 18mA@2dBm
    • 30mA@9dBm
  • 接收器
    • -83dBm@2Mbps
    • -87dBm@1Mbps
    • -91dBm@250Kbps
  • 协议引擎
    • 支持1到32字节或64字节数据长度
    • 支持自动应答及自动重传
    • 6个接收数据通道构成1:6的星状网络
  • 电源管理
    • 工作电压:2.3~3.3V
    • 2uA断电模式
    • 30uA待机-Ⅰ模式
  • 主机接口
    • 支持3引脚SPI, 4Mbps SPI接口速率
    • 支持两个独立的32字节TX和RX FIFOs
    • 支持一个64字节的TX和RX FIFOs
  • 封装
    • SOP8

这里要注意的几点:

  1. 工作电压是3.3V, 不要错接5V.
  2. SPI速率为4MHz, 实测上限不会比4MHz高多少, 在6MHz频率时大概率SPI通信错误导致不能工作.
  3. TX FIFO 与NRF24L01相比只有两个32字节, 而NRF24L01是3个32字节. 性能相对缩水.

PIN脚定义和应用电路

PIN脚定义

  • VDD 和 VSS 分别接 VCC 和 GND
  • XC1 和 XC2 接晶振
  • ANT 接天线
  • 用于MCU接口通信的只有 CSN, SCK 和 DATA 这三个PIN

应用电路

模块实物

嘉立创打样的测试模块 (项目地址 https://oshwhub.com/iosetting/xn297lbw-xl2400-evb)

使用PY32F0驱动XN297LBW

XN297L最新的SDK可以从磐启的论坛下载 论坛›BLE-Lite系列2.4GHz TRX›XN297L›XN297L_SDK. 因为面向的主要是低成本应用, 大多数搭配的MCU为廉价的8位8051, 不一定有硬件SPI, 为了保证兼容在SDK中使用的都是GPIO模拟SPI方式进行驱动. 但是实际上是可以通过硬件SPI方式进行驱动的.

以下分别对GPIO模拟和硬件SPI方式的驱动进行介绍.

硬件准备

  • XN297LBW模块
  • PY32F002A/PY32F003/PY32F030 系列MCU的开发板, 建议在验证阶段使用 20PIN 及以上封装的型号, 避免PIN脚复用引起的干扰. 跑通后再迁移到低PIN型号
  • USB2TTL模块, 用于观察输出
  • 以上硬件需要两套, 测试中分别用于接收和发送

下面以PY32F002A为例. 代码不需调整可以直接运行于 PY32F003x 和 PY32F030x 系列的其它型号.

GPIO模拟方式

接线

注意电源使用3.3V

PY32          XN297LBW SOP8
PA1   ------> CLK/SCK
PA6   ------> CSN/NSS
PA7   ------> DATA/MOSIUSB2TTL
PA2(TX) ----> RX
PA3(RX) ----> TX

代码说明

SDK代码中使用的MCU是STM8L, 需要迁移到 PY32F002A.

将 xn297l.h 中的 GPIO 设置换为PY32F002A的PIN脚

#define XN297L_DATA_OUT()        LL_GPIO_SetPinMode(GPIOA, LL_GPIO_PIN_7, LL_GPIO_MODE_OUTPUT)
#define XN297L_DATA_IN()         LL_GPIO_SetPinMode(GPIOA, LL_GPIO_PIN_7, LL_GPIO_MODE_INPUT)
#define XN297L_DATA_LOW()        LL_GPIO_ResetOutputPin(GPIOA, LL_GPIO_PIN_7)
#define XN297L_DATA_HIGH()       LL_GPIO_SetOutputPin(GPIOA, LL_GPIO_PIN_7)
#define XN297L_DATA_READ()       LL_GPIO_IsInputPinSet(GPIOA, LL_GPIO_PIN_7)#define XN297L_SCK_LOW()         LL_GPIO_ResetOutputPin(GPIOA, LL_GPIO_PIN_1)
#define XN297L_SCK_HIGH()        LL_GPIO_SetOutputPin(GPIOA, LL_GPIO_PIN_1)#define XN297L_CSN_LOW()         LL_GPIO_ResetOutputPin(GPIOA, LL_GPIO_PIN_6)
#define XN297L_CSN_HIGH()        LL_GPIO_SetOutputPin(GPIOA, LL_GPIO_PIN_6)#define XN297L_CE_LOW()          XN297L_WriteReg(XN297L_CMD_CE_FSPI_OFF, 0)
#define XN297L_CE_HIGH()         XN297L_WriteReg(XN297L_CMD_CE_FSPI_ON, 0)

在 main.c 中增加GPIO初始化

static void APP_GPIOConfig(void)
{LL_GPIO_InitTypeDef GPIO_InitStruct;/* PA1 CLK */GPIO_InitStruct.Pin = LL_GPIO_PIN_1;GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;LL_GPIO_Init(GPIOA, &GPIO_InitStruct);/* PA6 CSN */GPIO_InitStruct.Pin = LL_GPIO_PIN_6;LL_GPIO_Init(GPIOA, &GPIO_InitStruct);/* PA7 DATA */GPIO_InitStruct.Pin = LL_GPIO_PIN_7;GPIO_InitStruct.Mode = LL_GPIO_MODE_INPUT;LL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}

使用GPIO模拟SPI的字节写

/*** Emulate SPI Write on GPIO pins*/
void XN297L_WriteByte(uint8_t value)
{uint8_t i = 0;XN297L_SCK_LOW();XN297L_DATA_OUT();for (i = 0; i < 8; i++){XN297L_SCK_LOW();if (value & 0x80){XN297L_DATA_HIGH();}else{XN297L_DATA_LOW();}XN297L_SCK_HIGH();value = value << 1;}XN297L_SCK_LOW();
}

模拟字节读. 这里有个细节, 在XN297L_SCK_HIGH();之后加一个__NOP();, 如果没有这个NOP(), PY32F0在低频率(8MHz和24MHz)的时候容易产生读取错误.

/*** Emulate SPI Read on GPIO pins*/
uint8_t XN297L_ReadByte(void)
{uint8_t i = 0, RxData = 0;XN297L_DATA_IN();for (i = 0; i < 8; i++){RxData = RxData << 1;XN297L_SCK_HIGH();__NOP();if (XN297L_DATA_READ()){RxData |= 0x01;}else{RxData &= 0xfe;}XN297L_SCK_LOW();}return RxData;
}

XN297L 的初始化. 这部分是相对固定的流程, 可以根据自己的需要进行调整, 但是在测试阶段务必保持接收端和发送端的配置一致. 这里在SDK的代码上做了一些修改, 开启了发送的重试和ACK.

// 这部分来自于手册 "XN297L 软件设计和调试参考"
const uint8_t BB_cal_data[]    = {0x12,0xED,0x67,0x9C,0x46},RF_cal_data[]    = {0xF6,0x3F,0x5D},RF_cal2_data[]   = {0x45,0x21,0xEF,0x2C,0x5A,0x42},Dem_cal_data[]   = {0x01},Dem_cal2_data[]  = {0x0B,0xDF,0x02};void XN297L_Init(void)
{XN297L_WriteReg(XN297L_CMD_RST_FSPI, 0x5A); // Soft resetXN297L_WriteReg(XN297L_CMD_RST_FSPI, 0XA5);XN297L_WriteReg(XN297L_CMD_FLUSH_TX, 0);XN297L_WriteReg(XN297L_CMD_FLUSH_RX, 0);XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_STATUS, 0x70);       // Clear status flagsXN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_EN_AA, 0x3F);        // AutoAck on all pipesXN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_EN_RXADDR, 0x3F);    // Enable all pipes (P0 ~ P5, bit0 ~ bit5)XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_SETUP_AW, XN297L_SETUP_AW_5BYTE); // Address widthXN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_RF_CH, 78);          // Channel 78, 2478M HZXN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_RX_PW_P0, XN297L_PLOAD_WIDTH ); // Payload width of P0XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_RX_PW_P1, XN297L_PLOAD_WIDTH ); // Payload width of P1XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_RX_PW_P2, XN297L_PLOAD_WIDTH ); // Payload width of P2XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_RX_PW_P3, XN297L_PLOAD_WIDTH ); // Payload width of P3XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_RX_PW_P4, XN297L_PLOAD_WIDTH ); // Payload width of P4XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_RX_PW_P5, XN297L_PLOAD_WIDTH ); // Payload width of P5XN297L_WriteFromBuf(XN297L_CMD_W_REGISTER | XN297L_REG_BB_CAL,    BB_cal_data,  sizeof(BB_cal_data));XN297L_WriteFromBuf(XN297L_CMD_W_REGISTER | XN297L_REG_RF_CAL2,   RF_cal2_data, sizeof(RF_cal2_data));XN297L_WriteFromBuf(XN297L_CMD_W_REGISTER | XN297L_REG_DEM_CAL,   Dem_cal_data, sizeof(Dem_cal_data));XN297L_WriteFromBuf(XN297L_CMD_W_REGISTER | XN297L_REG_RF_CAL,    RF_cal_data,  sizeof(RF_cal_data));XN297L_WriteFromBuf(XN297L_CMD_W_REGISTER | XN297L_REG_DEM_CAL2,  Dem_cal2_data,sizeof(Dem_cal2_data));XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_DYNPD, 0x00); // Dynamic payload width: offXN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_RF_SETUP,  XN297L_RF_POWER_P_9|XN297L_RF_DR_1M); // 9dbm 1MbpsXN297L_WriteReg(XN297L_CMD_ACTIVATE, 0x73);XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_SETUP_RETR, 0x10|0x05); // Retry interval 500µs, 5 timesif(XN297L_PLOAD_WIDTH >32){XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_FEATURE, XN297L_FEATURE_BIT5_CE_SOFT|XN297L_FEATURE_BIT43_DATA_64BYTE);}else{XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_FEATURE, XN297L_FEATURE_BIT5_CE_SOFT);}
}

数据发送函数. 因为前面开启了重试和ACK, 这里做了一个等待发送结果的轮询和超时判断

uint8_t XN297L_TxData(uint8_t *ucPayload, uint8_t length)
{uint8_t y = 100, status = 0;XN297L_CE_HIGH();__NOP();XN297L_WriteFromBuf(XN297L_CMD_W_TX_PAYLOAD, ucPayload, length);// Retry until timeoutwhile (y--){LL_mDelay(1);status = XN297L_ReadStatus();// If TX successful or retry timeout, exitif ((status & (XN297L_FLAG_MAX_RT | XN297L_FLAG_TX_DS)) != 0){//printf(" %d %02x\r\n", y, status);break;}}XN297L_WriteReg(XN297L_CMD_FLUSH_TX, 0);XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_STATUS, 0x70);XN297L_CE_LOW();return status;
}

数据接收. 因为接收使用的是轮询, 所以这里只是简单地判断了接收状态, 在收到数据时读取数据.

uint8_t XN297L_DumpRxData(void)
{uint8_t status, rxplWidth;status = XN297L_ReadStatus();if (status & XN297L_FLAG_RX_DR){XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_STATUS, status);rxplWidth = XN297L_ReadReg(XN297L_CMD_R_RX_PL_WID);XN297L_ReadToBuf(XN297L_CMD_R_RX_PAYLOAD, xbuf, rxplWidth);}return status;
}

完整代码

XN297L 示例代码的 GitHub 仓库地址: https://github.com/IOsetting/py32f0-template/tree/main/Examples/PY32F0xx/LL/GPIO/XN297LBW_Wireless

运行测试

修改 main.c 中的模式设置, 0为接收, 1为发送, 分别写入至两个PY32F002A开发板, 观察UART的输出.

// 0:RX, 1:TX
#define XN297L_MODE 0

接收端在每次接收到数据时, 输出第1,2,31个字节的值; 发送端每发送255组数据(每组32字节)后, 会显示发送成功的个数(十六进制), 这个输出可以用于计算发送成功率, 以及发送速度.

硬件SPI方式

接线

接线方式使用4线制全双工, PY32的MOSI和MISO都接到XN297LBW的DATA, 但是在MOSI(PA7)上串一个1K的电阻. 对于使用SPI协议的三线连接, 如果半双工SPI有问题, 都可以用这种接线试试全双工方式通信. 从实际测试看, XN297LBW 支持这种接线方式.

PY32                XN297LBW SOP8
PA0   ------------> DATA/MOSI
PA7   ---> 1KR ---> DATA/MOSI
PA1   ------------> CLK/SCK
PA6   ------------> CSN/NSSUSB2TTL
PA2(TX) ----------> RX
PA3(RX) ----------> TX

代码说明

SPI接口的初始化. 注意SPI的时钟频率不要超过4MHz

/*** SPI1 Alternative Function Pins* SPI1_SCK:  PA1_AF0, PA2_AF10, PA5_AF0, PA9_AF10, PB3_AF0* SPI1_MISO: PA0_AF10, PA6_AF0, PA7_AF10, PA11_AF0, PA13_AF10, PB4_AF0* SPI1_MOSI: PA1_AF10, PA2_AF0, PA3_AF10, PA7_AF0, PA8_AF10, PA12_AF0, PB5_AF0* SPI1_NSS:  PA4_AF0, PA10_AF10, PA15_AF0, PB0_AF0, PF1_AF10, PF3_AF10
*/
static void APP_SPI_Config(void)
{LL_SPI_InitTypeDef SPI_InitStruct = {0};LL_GPIO_InitTypeDef GPIO_InitStruct = {0};LL_APB1_GRP2_EnableClock(LL_APB1_GRP2_PERIPH_SPI1);// PA1 SCKGPIO_InitStruct.Pin = LL_GPIO_PIN_1;GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;GPIO_InitStruct.Alternate = LL_GPIO_AF_0;LL_GPIO_Init(GPIOA, &GPIO_InitStruct);// PA0 MISOGPIO_InitStruct.Pin = LL_GPIO_PIN_0;GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;GPIO_InitStruct.Alternate = LL_GPIO_AF_10;LL_GPIO_Init(GPIOA, &GPIO_InitStruct);// PA7 MOSIGPIO_InitStruct.Pin = LL_GPIO_PIN_7;GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;GPIO_InitStruct.Alternate = LL_GPIO_AF_0;LL_GPIO_Init(GPIOA, &GPIO_InitStruct);/** Full duplex mode, MOSI and MISO both connect to DATA,* Add one 1KR between MOSI and DATA*/SPI_InitStruct.TransferDirection = LL_SPI_FULL_DUPLEX;SPI_InitStruct.Mode = LL_SPI_MODE_MASTER;SPI_InitStruct.DataWidth = LL_SPI_DATAWIDTH_8BIT;SPI_InitStruct.ClockPolarity = LL_SPI_POLARITY_LOW;SPI_InitStruct.ClockPhase = LL_SPI_PHASE_1EDGE;SPI_InitStruct.NSS = LL_SPI_NSS_SOFT;// SPI的时钟频率不要超过4MHzSPI_InitStruct.BaudRate = LL_SPI_BAUDRATEPRESCALER_DIV16;SPI_InitStruct.BitOrder = LL_SPI_MSB_FIRST;LL_SPI_Init(SPI1, &SPI_InitStruct);LL_SPI_Enable(SPI1);
}

硬件SPI方式的字节读写

uint8_t SPI_TxRxByte(uint8_t data)
{uint8_t SPITimeout = 0xFF;/* Check the status of Transmit buffer Empty flag */while (READ_BIT(SPI1->SR, SPI_SR_TXE) == RESET){if (SPITimeout-- == 0)return 0;}LL_SPI_TransmitData8(SPI1, data);SPITimeout = 0xFF;while (READ_BIT(SPI1->SR, SPI_SR_RXNE) == RESET){if (SPITimeout-- == 0)return 0;}// Read from RX bufferreturn LL_SPI_ReceiveData8(SPI1);
}

对应XN297L的命令读写改造为调用硬件SPI读写函数

uint8_t XN297L_WriteReg(uint8_t reg, uint8_t value)
{uint8_t reg_val;XN297L_CSN_LOW();SPI_TxRxByte(reg);reg_val = SPI_TxRxByte(value);XN297L_CSN_HIGH();return reg_val;
}uint8_t XN297L_ReadReg(uint8_t reg)
{uint8_t reg_val;XN297L_CSN_LOW();SPI_TxRxByte(reg);reg_val = SPI_TxRxByte(XN297L_CMD_NOP);XN297L_CSN_HIGH();return reg_val;
}

完整代码

XN297L 示例代码的 GitHub 仓库地址: https://github.com/IOsetting/py32f0-template/tree/main/Examples/PY32F0xx/LL/SPI/XN297L_Wireless

运行测试

和GPIO模拟方式的一样, 修改 main.c 中的模式设置, 0为接收, 1为发送, 分别写入至两个PY32F002A开发板, 观察UART的输出.

// 0:RX, 1:TX
#define XN297L_MODE 0

利用FIFO队列提升发送速度

在 NRF24L01 的使用中, 可以通过 “直接写入TX FIFO -> 通过 FLAG 观察 TX FIFO 是否写满判断是继续写入还是阻塞等待” 的方式提升发送速度. XN297L 的 TX FIFO 队列包含两组 32 个字节, 也可以通过这种方式进行加速.

相关的函数

ErrorStatus XN297L_TxFast(const uint8_t *ucPayload, uint8_t length)
{//Blocking only if FIFO is full. This will loop and block until TX is successful or failwhile ((XN297L_ReadStatus() & XN297L_FLAG_TX_FULL)) {if (xn297l_state & XN297L_FLAG_MAX_RT) {return ERROR;}}XN297L_WriteFromBuf(XN297L_CMD_W_TX_PAYLOAD, ucPayload, length);XN297L_CE_HIGH();return SUCCESS;
}// 用于 MAX_RT 状态清除标志位
void XN297L_ReuseTX(void)
{XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_STATUS, XN297L_FLAG_MAX_RT); //Clear max retry flagXN297L_CE_LOW();XN297L_CE_HIGH();
}

使用方式: 在发送循环中调用 XN297L_TxFast() 进行发送, 在遇到错误时, 用 XN297L_ReuseTX() 重置状态

if (XN297L_TxFast(tmp, XN297L_PLOAD_WIDTH) == SUCCESS)
{j++;
}
else
{XN297L_ReuseTX();
}

从实际测试结果看, 用 XN297L_TxFast() 发送相比普通发送方式有10%的性能提升.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/104857.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【算法-贪心】无重叠区间-力扣 435 题

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kuan 的首页,持续学…

论文阅读:ECAPA-TDNN

1. 提出ECAPA-TDNN架构 TDNN本质上是1维卷积&#xff0c;而且常常是1维膨胀卷积&#xff0c;这样的一种结构非常注重context&#xff0c;也就是上下文信息&#xff0c;具体而言&#xff0c;是在frame-level的变换中&#xff0c;更多地利用相邻frame的信息&#xff0c;甚至跳过…

windows系统安装openssl并且转换证书格式

概述 碎碎念&#xff0c;如果你有MAC电脑&#xff0c;就别折腾了&#xff0c;直接用MAC电脑吧,不用安装直接用openssl 本文主要讲到了openssl的基本使用方法&#xff0c;开发环境为windows&#xff0c;开发工具为VS2019.本文主要是说明openssl如何使用&#xff0c;不介绍任何理…

11-网络篇-DNS步骤

1.URL URL就是我们常说的网址 https://www.baidu.com/?from1086k https是协议 m.baidu.com是服务器域名 ?from1086k是路径 2.域名 比如https://www.baidu.com 顶级域名.com 二级域名baidu 三级域名www 3.域名解析DNS DNS就是将域名转换成IP的过程 根域名服务器&#xff1a…

【计算机组成体系结构】移码 | 定点小数的表示和运算

一、移码 上篇我们提到了原码&#xff0c;反码和补码的表示形式和如何转换。这篇我们会提到一个新的概念—移码。移码也很简单&#xff0c;其实就是在补码的基础上把符号取反即可。 值得注意的是&#xff0c;移码只能表示整数。而原码&#xff0c;反码和补码既可以表示整数又…

【C++入门】命名空间详解(从零开始,冲击蓝桥杯)

C入门 命名空间 南喵小鸡汤程序员可以让步&#xff0c;却不可以退缩&#xff0c;可以羞涩&#xff0c;却不可以软弱&#xff0c;总之&#xff0c;程序员必须是勇敢的。一 . 命名空间的介绍二.命名空间的实际应用1.为什么要有命名空间我们在使用变量时,通常会为他定义一个名字,在…

pycharm连接gitlab

1、下载安装gitlab 下载地址&#xff1a;Git - Downloading Package 下载后傻瓜式安装&#xff0c;注意勾选配置环境变量 未配置自己配置&#xff0c;电脑-属性-高级系统配置-环境变量 系统变量path&#xff1a;添加git安装目录下bin目录 2、检验安装完成 桌面右键git-open…

物联网AI MicroPython传感器学习 之 TEA5767 FM收音机模块

学物联网&#xff0c;来万物简单IoT物联网&#xff01;&#xff01; 一、产品简介 TEA5767 FM收音机模块是工作频率在76MHz&#xff5e;108MHz的自动数字调谐收音机。其特点高灵敏度、高稳定、低噪声&#xff0c;内部集成了中频选频和解调网络。 引脚定义 GND&#xff1a;接…

Java对象的比较

目录 PriorityQueue中插入对象 元素的比较 基本类型的比较 对象比较问题 对象的比较 覆写基类的equals 基于Comparble接口类的比较 基于比较器的比较 三种方式的对比 集合框架中PriorityQueue的比较方式 PriorityQueue中插入对象 上一篇博文中我们讲了优先级队列&#…

golang 拉取 bitbucket.org 私有库

以 bitbucket.org 平台和mac电脑为例 前置条件私库需要给你账号权限&#xff0c;可拉取的权限&#xff0c;否则无法进行正常拉取 我们采用ssh方式&#xff0c;需要在本地生成对应的 rsa 的公钥和私钥&#xff0c;将公钥配置如下图&#xff1a; 在 .ssh/config 写入你的配置 H…

2015架构案例(五十一)

第5题 【说明】某信息技术公司计划开发一套在线投票系统&#xff0c;用于为市场调研、信息调查和销售反馈等业务提供服务。该系统计划通过大量宣传和奖品鼓励的方式快速积累用户&#xff0c;当用户规模扩大到一定程度时&#xff0c;开始联系相关企业提供信息服务&#xff0c;并…

Codeforces Round 903 (Div. 3) C(矩形旋转之后对应的坐标)

题目链接&#xff1a;Codeforces Round 903 (Div. 3) C 题目&#xff1a; 思想&#xff1a; 旋转之后对应的坐标&#xff1a; &#xff08;i&#xff0c;j&#xff09;&#xff08;n1-j&#xff0c;i&#xff09;&#xff08;n1-i&#xff0c;n1-j&#xff09;&#xff08;j…

浅谈MDK, IAR,CLANG和GCC的局部变量字节对齐处理差异(2023-10-13)

视频&#xff1a; https://www.bilibili.com/video/BV1CB4y1Z7kA 浅谈MDK, IAR, CLANG和GCC的局部变量字节对齐处理差异 问题由来&#xff1a; 早期这个帖子里面的局部变量对齐仅测试了MDK AC5&#xff0c;但项目中使用AC6发现了新问题&#xff0c;看来AAPCS规约研究的还是不…

ArcGIS笔记4_水动力模型验证不理想时如何修改局部水深地形

本文目录 前言Step 1 模型验证不理想的情况Step 2 修改确值点并重新插值 前言 本章主要服务于MIKE水动力模型的调整修改工作。水动力模型跑完之后&#xff0c;常常会出现验证结果不理想的情况&#xff0c;比如潮位验证中&#xff0c;实测站点数据与模拟数据相差很大&#xff0…

苹果ios用户下载ipa文件内测签名的后的app应用下载安装到手机图标消失了-解决方案

下载好的应用竟然找不到了&#xff1f;这么神奇&#xff1f;我尝试了解了一下复原了同学给我的内容果然出现了我尝试科技了一下&#xff0c;总结了以下的可能性&#xff01;同学如果这个回答解决了你的困扰&#xff0c;同学给个赞&#xff0c;如果你有更好的排查方案评论区分享…

Modelsim查看波形窗口内断言(SVA)消息指示器

步骤1&#xff1a;创建工程并编译完成 在相应目录下创建好工程并编译无错误后&#xff1b; 步骤二&#xff1a; 在菜单栏中选择“Simulate”—>“Start Simulation”—>“Others”,在“Others Vsim Options”中输入 -msgmode both -displaymsgmode both 步骤三&#xf…

UI自动化测试 —— Jenkins配置

前一段时间帮助团队搭建了UI自动化环境&#xff0c;这里将Jenkins环境的一些配置分享给大家。 背景&#xff1a; 团队下半年的目标之一是实现自动化测试&#xff0c;这里要吐槽一下&#xff0c;之前开发的测试平台了&#xff0c;最初的目的是用来做接口自动化测试和性能测试&…

SQL Server远程登录失败

SQL Server远程登录失败 检查SQL SERVER 是否允许远程访问. 具体步骤: 1)在远端SQL Server主机上,打开SSMS并连接数据库 2)在相应”数据库”上单击右键,选择”属性” 3)选择”连接”选项卡,检查”远程服务器连接”下,RPC服务是否选择. 设置SQL Server相关TCP连接 1.打开SQL Se…

下载Python的不同版本在同一台电脑上如何共存

1. 下载安装不同版本的Python 官网下载&#xff1a;https://www.python.org/downloads/安装自己需要的版本&#xff08;我这里以Python3.6和Python3.9为例&#xff0c;下载安装细节不过多赘述&#xff09; &#xff08;这里的安装路径自己设定&#xff0c;命名最好是根据下载…

项目管理之六大目标及成功方程式

项目管理的六大目标分别是范围、质量、时间、成本、收益和风险。在项目开始之前&#xff0c;需要明确了解项目的范围&#xff0c;并在项目执行过程中对范围进行严格控制&#xff0c;确保项目不偏离既定的范围。同时&#xff0c;需要明确项目的质量标准和预期成果&#xff0c;然…