基于天牛须优化的BP神经网络(分类应用) - 附代码

基于天牛须优化的BP神经网络(分类应用) - 附代码

文章目录

  • 基于天牛须优化的BP神经网络(分类应用) - 附代码
    • 1.鸢尾花iris数据介绍
    • 2.数据集整理
    • 3.天牛须优化BP神经网络
      • 3.1 BP神经网络参数设置
      • 3.2 天牛须算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用天牛须算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1特征2特征3类别
单组iris数据5.32.11.21

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组)测试集(组)总数据(组)
10545150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.天牛须优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络结构

图1.神经网络结构

神经网络参数如下:

%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 天牛须算法应用

天牛须算法原理请参考:网络博客

天牛须算法的参数设置为:

popsize = 10;%种群数量Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从天牛须算法的收敛曲线可以看到,整体误差是不断下降的,说明天牛须算法起到了优化的作用:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/104553.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vscode虚拟环境使用jupyter

在某虚拟环境内安装torch,但是ipyn文件保存后无法正常导入torch 1.conda环境下安装Jupyter等一切配置,进入虚拟环境 2.conda install nb_conda_kernels 3.安装完成后重新打开VSCode,在运行Jupyter notebook中的代码之前,在右上…

微软和OpenAI正在开发AI芯片, 并计划下个月发布

今年初,Chat**引起了无数网友关注,一度成为了热门话题。这是由人工智能研究实验室OpenAI开发的一款聊天机器人模型,也称为一种人工智能(AI)技术驱动的自然语言处理工具。能够通过学习和理解人类的语言来进行对话&#…

百度SEO优化全攻略(提高网站排名的5个方面)

百度SEO入门介绍: 随着互联网的不断发展,SEO已经成为网站优化的重要一环。而百度作为中国最大的搜索引擎,其SEO优化更是至关重要。SEO不仅能够提高网站排名,还能够提高网站流量、用户体验以及品牌知名度。因此,掌握百…

orgChart.js组织架构图

OrgChart.js是什么? 基于ES6的组织结构图插件。 特征 支持本地数据和远程数据(JSON)。 基于CSS3过渡的平滑扩展/折叠效果。 将图表对齐为4个方向。 允许用户通过拖放节点更改组织结构。 允许用户动态编辑组织图并将最终层次结构保存为…

[CSAWQual 2019]Web_Unagi - 文件上传+XXE注入(XML编码绕过)

[CSAWQual 2019]Web_Unagi 1 解题流程1.1 分析1.2 解题2 思考总结1 解题流程 这篇博客讲了xml进行编码转换绕过的原理:https://www.shawroot.cc/156.html 1.1 分析 页面可以上传,上传一句话php失败,点击示例发现是xml格式,那么就是XXE注入了 点击about得到flag位置: Fla…

蓝桥杯每日一题2023.10.13

组队 - 蓝桥云课 (lanqiao.cn) 题目描述 方法一:由肉眼观察找到在一至五号位的不同编号成员的最大的值 #include<bits/stdc.h> using namespace std; int main() {cout << 98 99 98 97 98;return 0; } 方法二&#xff1a;由dfs一一找寻 #include<bits/st…

图形界面四则运算计算器(Python+PyQt5)

(1) 导入所需的库和模块。 (2) 创建一个名为Calculator的类&#xff0c;继承自QMainWindow。 (3) 在Calculator类的__init__方法中&#xff0c;调用initUI方法初始化界面。 (4) 在initUI方法中&#xff0c;设置窗口标题和大小&#xff0c;创建显示结果的文本框&#xff0c;并调…

【AI视野·今日Sound 声学论文速览 第二十四期】Thu, 12 Oct 2023

AI视野今日CS.Sound 声学论文速览 Thu, 12 Oct 2023 Totally 12 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Sound Papers Enhancing expressivity transfer in textless speech-to-speech translation Authors Jarod Duret LIA , Benjamin O Brien LIA , Yanni…

PyTorch 深度学习之处理多维特征的输入Multiple Dimension Input(六)

1.Multiple Dimension Logistic Regression Model 1.1 Mini-Batch (N samples) 8D->1D 8D->2D 8D->6D 1.2 Neural Network 学习能力太好也不行&#xff08;学习到的是数据集中的噪声&#xff09;&#xff0c;最好的是要泛化能力&#xff0c;超参数尝试 Example, Arti…

Java 基于SpringBoot的某家乡美食系统

1 简介 《Java 基于SpringBoot的某家乡美食系统》该项目含有源码、文档等资料、配套开发软件、软件安装教程等。系统功能完整&#xff0c;适合作为毕业设计、课程设计、数据库大作业学习使用。 功能介绍 这个项目是基于 SpringBoot和 Vue 开发的地方美食系统&#xff0c;包括…

K邻近算法(KNN,K-nearest Neighbors Algorithm)

文章目录 前言应用场景欧几里得距离&#xff08;欧氏距离&#xff09;两类、单一属性&#xff08;1D&#xff09;两类、两种属性&#xff08;2D&#xff09;两类、两种以上属性&#xff08;>3D&#xff09; Examples in R再来一个补充一下什么是变量 什么是变量&#xff1f;…

React之setState

一、useState使用规则 1、useState 函数可以执行多次&#xff0c;每次执行互相独立&#xff0c;每调用一次为函数组件提供一个状态 2、useState只能出现在【函数组件】或者其他hook函数中 3、不能嵌套在if/for/其它函数中&#xff08;react按照hooks的调用顺序识别每一个hook&…

ubuntu下yolov5 tensorrt模型部署

文章目录 ubuntu下yolov5 tensorrt模型部署一、Ubuntu18.04环境配置1.1 安装工具链和opencv1.2 安装Nvidia相关库1.2.1 安装Nvidia显卡驱动1.2.2 安装 cuda11.31.2.3 安装 cudnn8.21.2.4 下载 tensorrt8.4.2.41.2.5 下载仓库TensorRT-Alpha并设置 二、从yolov5源码中导出onnx文…

力扣第108题 将有序数组转二叉搜索树 c++

题目 108. 将有序数组转换为二叉搜索树 简单 相关标签 树 二叉搜索树 数组 分治 二叉树 给你一个整数数组 nums &#xff0c;其中元素已经按 升序 排列&#xff0c;请你将其转换为一棵 高度平衡 二叉搜索树。 高度平衡 二叉树是一棵满足「每个节点的左右两个子树…

【iOS】Mac M1安装iPhone及iPad的app时设置问题

【iOS】Mac M1安装iPhone及iPad的app时设置问题 简介一&#xff0c;设置问题二&#xff0c;适配问题 简介 由于 苹果M1芯片的Mac可用安装iPhone以及iPad应用&#xff0c;因为开发者并没有适配Mac&#xff0c;因此产生了很多奇怪问题&#xff0c;这里总结归纳Mac M1安装iPhone和…

五、OSPF动态路由实验

拓扑图&#xff1a; 基本ip的配置已经配置好了&#xff0c;接下来对两台路由器配置ospf协议&#xff0c;两台PC进行跨网段通讯 R1与R2构成单区域OSPF区域0&#xff0c;首先对R1进行配置 首先进入ospf 默认进程1&#xff0c;router id省略空缺&#xff0c;之后进入area 0区域&…

迁移学习--预训练微调

目录 1、迁移学习作用 2、迁移学习的途径 3、相关的领域 4、在计算机视觉中的应用 5、迁移学习的办法 预训练模型 微调 6、总结 1、迁移学习作用 定义&#xff1a;能在一个任务学习一个模型&#xff0c;然后用来解决相关的别的任务&#xff0c;这样我们在一个地方花…

一种用于肽图分析的烷化剂,Desthiobiotin-Iodoacetamide

中文名&#xff1a;脱硫生物素-碘乙酰胺 英文名&#xff1a;Desthiobiotin-Iodoacetamide 化学式&#xff1a;C14H25IN4O3 分子量&#xff1a;424.28 外观&#xff1a;固体/粉末 规格&#xff1a;10mg、25mg、50mg等&#xff08;接受各种规格的定制服务&#xff0c;具体可…

Elasticsearch:使用 Langchain 和 OpenAI 进行问答

这款交互式 jupyter notebook 使用 Langchain 将虚构的工作场所文档拆分为段落 (chunks)&#xff0c;并使用 OpenAI 将这些段落转换为嵌入并将其存储到 Elasticsearch 中。然后&#xff0c;当我们提出问题时&#xff0c;我们从向量存储中检索相关段落&#xff0c;并使用 langch…

C# InformativeDrawings 生成素描画

效果 项目 下载 可执行程序exe下载 源码下载