Kubernetes核心组件Services

1. Kubernetes Service概念

Service是kubernetes最核心的概念,通过创建Service,可以为一组具有相同功能的POD(容器)应用提供统一的访问入口,并且将请求进行负载分发到后端的各个容器应用上。

在Kubernetes中,在受到RC调控的时候,Pod副本是变化的,比如发生迁移或者伸缩的时候。这对于Pod的访问者来说是不可接受的。

Kubernetes中的Service是一种抽象概念,它定义了一个Pod逻辑集合以及访问它们的策略,Service同Pod的关联同样是居于Label来完成的。Service的目标是提供一种桥梁, 它会为访问者提供一个固定访问地址,用于在访问时重定向到相应的后端,这使得非 Kubernetes原生应用程序,在无须为Kubemces编写特定代码的前提下,轻松访问后端。

Service同RC一样,都是通过Label来关联Pod的。当你在Service的yaml文件中定义了该Service的selector中的label为app:my-web,那么这个Service会将Pod–>metadata–>labeks中label为app:my-web的Pod作为分发请求的后端。

当Pod发生变化时(增加、减少、重建等),Service会及时更新。这样一来,Service就可以作为Pod的访问入口,起到代理服务器的作用,而对于访问者来说,通过Service进行访问,无需直接感知Pod。

1.2 Kubernetes Service实现方式

Kubernetes分配给Service的固定IP是一个虚拟IP,并不是一个真实的IP,在外部是无法寻址的。在真实的系统实现上,Kubernetes是通过Kube-proxy组件来实现的虚拟IP路由及转发。所以在之前集群部署的环节上,我们在每个Node上均部署了Proxy这个组件,从而实现了Kubernetes层级的虚拟转发网络。

  • Kubernetes通过为每个service分配一个唯一的ClusterIP,所以当使用ClusterIP:port的组合访问一个service的时候,不管port是什么,这个组合是一定不会发生重复的。另一方面,kube-proxy为每个service真正打开的是一个绝对不会重复的随机端口,用户在service描述文件中指定的访问端口会被映射到这个随机端口上。这就是为什么用户可以在创建service时随意指定访问端口。
  • K8S集群中,Pod的IP是在docker0网段动态分配的,当发生重启,扩容等操作时,IP地址会随之变化。当某个Pod(frontend)需要去访问其依赖的另外一组Pod(backend)时,如果backend的IP发生变化时,如何保证fronted到backend的正常通信变的非常重要,此时需要借助Service实现统一访问。
  • Service的Virtual VIP是由Kubernetes虚拟出来的内部网络,外部是无法寻址到的。但是有些服务又需要被外部访问到,例如web前段。这时候就需要加一层网络转发,即外网到内网的转发。Kubernetes提供了NodePort、LoadBalancer、Ingress三种方式:
  • NodePort,原理是Kubernetes会在每一个Node上暴露出一个端口:nodePort,外部网络可以通过(任一Node)[NodeIP]:[NodePort]访问到后端的Service。
  • LoadBalancer,在NodePort基础上,Kubernetes可以请求底层云平台创建一个负载均衡器,将每个Node作为后端,进行服务分发。该模式需要底层云平台(例如GCE)支持。
  • Ingress,是一种HTTP方式的路由转发机制,由Ingress Controller和HTTP代理服务器组合而成。Ingress Controller实时监控Kubernetes API,实时更新HTTP代理服务器的转发规则。HTTP代理服务器有GCE Load-Balancer、HaProxy、Nginx等开源方案。

1.3 Service实战NodePort案例实战

NodePort模式,Kubernetes将会在每个Node上打开一个端口并且每个Node的端口都是一样的,通过:NodePort的方式Kubernetes集群外部的程序可以访问Service。

NodePort每个 Node节点的端口有很多(0~65535),NodePort案例演练配置实战,如图所示,选择外部网络:
在这里插入图片描述
在这里插入图片描述
通过Node IP+31455端口访问,如图所示:
在这里插入图片描述
在这里插入图片描述
Nginx Service配置代码如下:


{"kind": "Service","apiVersion": "v1","metadata": {"name": "nginx","namespace": "default","selfLink": "/api/v1/namespaces/default/services/nginx","uid": "6a84483a-5262-11e8-8969-000c292f77da","resourceVersion": "613764","creationTimestamp": "2021-05-08T01:52:08Z","labels": {"app": "nginx"}},"spec": {"ports": [{"name": "tcp-30080-80-p7s3q","protocol": "TCP","port": 30080,"targetPort": 80,"nodePort": 31455}],"selector": {"app": "nginx"},"clusterIP": "172.17.188.189","type": "LoadBalancer","sessionAffinity": "None"},"status": {"loadBalancer": {}}
}

1.4 Service- LoadBalancer实操案例一

LoadBlancer Service 是 kubernetes 深度结合云平台的一个组件;当使用 LoadBlancer Service 暴露服务时,实际上是通过向底层云平台申请创建一个负载均衡器来向外暴露服务。

目前 LoadBlancer Service 支持的云平台已经相对完善,比如国外的 GCE、DigitalOcean,国内的 阿里云,私有云 Openstack 等等,由于 LoadBlancer Service 深度结合了云平台,所以只能在一些云平台上来使用。

LoadBalancer会分配ClusterIP,分配NodePort,并且通过Cloud Provider来实现LB设备的配制,并且在LB设备中配置中,将:NodePort作为Pool Member,LB设备依据转发规则将流量转到节点的NodePort。
kubectl expose deployment nginxv1 --port=8081 --target-port=80 --type=LoadBalancer

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.5 LoadBalancer案例二

LoadBalancer,在NodePort基础上,Kubernetes可以请求底层云平台创建一个负载均衡器,将每个Node作为后端,进行服务分发。 ClusterIP模式会提供一个集群内部的虚拟IP(与Pod不在同一网段),以供集群内部的pod之间通信使用。ClusterIP是Kubernetes service的默认类型;
在这里插入图片描述
为了实现上图的功能,需要以下几个组件的协同工作:

  • apiserver 用户通过kubectl命令向apiserver发送创建service的命令,apiserver接收到请求以后将数据存储到etcd中;
  • kube-proxy kubernetes的每个节点中都有一个叫做kube-proxy的进程,这个进程负责感知service,pod的变化,并将变化的信息写入本地的iptables中;
  • Iptables 使用NAT等技术将virtualIP的流量转至endpoint中。
    Cluster IP访问需要在Master /etc/kubernetes/apiserver配置文件,添加如下代码:
    KUBE_SERVICE_ADDRESSES=“–service-cluster-ip-range=172.17.188.0/24”
    重启apiserver及其他相关的服务即可,指令:

for I in etcd kube-apiserver kube-controller-manager kube-scheduler; do systemctl restart $I; systemctl enable $I; done

在这里插入图片描述

然后实战ClusterIP案例演练配置,如图所示:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
基于Cluster IP访问80端口,首先要在各个NODE节点配置访问Cluster IP网段的路由,执行命令如下:
ip route add 172.17.188.0/24 dev docker0
#ip route del 172.17.188.0/24 dev docker0

在这里插入图片描述
访问Cluster IP:172.17.188.61的80端口,访问效果如图所示:

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/103938.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++ opencv实现letterbox

代码&#xff1a; #include <iostream> #include "string" #include "opencv2/opencv.hpp"cv::Mat preprocess_img(cv::Mat& img, int input_w,int input_h) {int w,h,x,y;float r_winput_w/(img.cols*1.0);float r_hinput_h/(img.rows*1.0);if…

凉鞋的 Godot 笔记 108. 第二个通识:增删改查

在这一篇&#xff0c;我们来学习此教程的第二个通识&#xff0c;即&#xff1a;增删改查。 增删改查我们不只是一次接触到了。 在最先接触的场景窗口中&#xff0c;我们是对 Node 进行增删改查。 在文件系统窗口中&#xff0c;我们是对文件&文件夹进行增删改查&#xff1…

leetCode 583.两个字符串的删除操作 动态规划 + 优化空间复杂度(二维dp、一维dp)

583. 两个字符串的删除操作 - 力扣&#xff08;LeetCode&#xff09; 给定两个单词 word1 和 word2 &#xff0c;返回使得 word1 和 word2 相同所需的最小步数。 每步 可以删除任意一个字符串中的一个字符。 示例 1&#xff1a; 输入: word1 "sea", word2 &qu…

基于springboot实现校园闲置物品交易平台系统项目【项目源码+论文说明】

基于springboot实现校园闲置物品交易平台系统演示 摘要 社会的发展和科学技术的进步&#xff0c;互联网技术越来越受欢迎。网络计算机的交易方式逐渐受到广大人民群众的喜爱&#xff0c;也逐渐进入了每个用户的使用。互联网具有便利性&#xff0c;速度快&#xff0c;效率高&am…

nodejs+vue+elementui酒店客房服务系统mysql带商家

视图层其实质就是vue页面&#xff0c;通过编写vue页面从而展示在浏览器中&#xff0c;编写完成的vue页面要能够和控制器类进行交互&#xff0c;从而使得用户在点击网页进行操作时能够正常。 简单的说 Node.js 就是运行在服务端的 JavaScript。 前端技术&#xff1a;nodejsvueel…

基于单目相机的2D测量(工件尺寸和物体尺寸)

目录 1.简介 2.基于单目相机的2D测量 2.1 想法&#xff1a; 2.2 代码思路 2.2 主函数部分 1.简介 基于单目相机的2D测量技术在许多领域中具有重要的背景和意义。 工业制造&#xff1a;在工业制造过程中&#xff0c;精确测量是确保产品质量和一致性的关键。基于单目相机的2…

Go语言入门心法(二): 结构体

Go语言入门心法(一) Go语言入门心法(二): 结构体 一: Go语言中结构体认知 go语言中的结构体认知升维:go语言中的结构体本身是一种自定义的数据类型,即然是数据类型,则可以用来声明其他的变量,被声明的变量即为结构体的实例对象go语言中的结构体融合了c语言中的结构体体征和面…

Xshell7和Xftp7超详细下载教程(包括安装及连接服务器附安装包)

1.下载 1.官网地址&#xff1a; XSHELL - NetSarang Website 选择学校免费版下载 2.将XSHELL和XFTP全都下载下来 2.安装 安装过程就是选择默认选项&#xff0c;然后无脑下一步 3.连接服务器 1.打开Xshell7&#xff0c;然后新建会话 2.填写相关信息 出现Connection establi…

JVM 性能调优参数

JVM分为堆内存和非堆内存 堆的内存分配用-Xms和-Xmx -Xms分配堆最小内存&#xff0c;默认为物理内存的1/64&#xff1b; -Xmx分配最大内存&#xff0c;默认为物理内存的1/4。 非堆内存分配用-XX:PermSize和-XX:MaxPermSize -XX:PermSize分配非堆最小内存&#xff0c;默认为物理…

【LeetCode高频SQL50题-基础版】打卡第5天:第26~30题

文章目录 【LeetCode高频SQL50题-基础版】打卡第5天&#xff1a;第26~30题⛅前言超过5名学生的课&#x1f512;题目&#x1f511;题解 求关注者的数量&#x1f512;题目&#x1f511;题解 只出现一次的最大数字&#x1f512;题目&#x1f511;题解 买下所有产品的客户&#x1f…

《进化优化》第4章 遗传算法的数学模型

文章目录 4.1 图式理论4.2 马尔可夫链4.3 进化算法的马尔可夫模型的符号4.4 遗传算法的马尔可夫模型4.4.1 选择4.4.2 变异4.4.3 交叉 4.5 遗传算法的动态系统模型4.5.1 选择4.5.2 变异4.5.3 交叉 4.1 图式理论 图式是描述一组个体的位模式&#xff0c;其中用*来表示不在乎的位…

如何在Ubuntu 20.04.6 LTS系统上运行Playwright自动化测试

写在前面 这里以 Ubuntu 20.04.6 LTS为例。示例代码&#xff1a;自动化测试代码。 如果过程中遇到其他非文本中提到的错误&#xff0c;可以使用搜索引擎搜索错误&#xff0c;找出解决方案&#xff0c;再逐步往下进行。 一、 环境准备 1.1 安装python3 1.1.1 使用APT安装Py…

python+opencv+深度学习实现二维码识别 计算机竞赛

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; pythonopencv深度学习实现二维码识别 &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&#xff1a;3分工作量&#xff1a;3分创新点&#xff1a;3分 该项目较为新颖&…

跨语言深入探讨如何实现方法增强:Java Go的多策略实现

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

虚拟现实VR技术在医疗行业的应用介绍

虚拟现实 (VR) 虽然经常与游戏联系在一起&#xff0c;但不可否认&#xff0c;未来科技少不了虚拟现实&#xff0c;其应用可以彻底改变许多行业。在医疗领域&#xff0c;无数人正在探索 VR 可以帮助患者和医疗从业者实现更好的治疗结果治疗方式&#xff0c;比如在手术、疼痛管理…

最新水果FL Studio21.2中文汉化版本覆盖升级

FLStudio中文21最新版本以其使用速度而闻名&#xff0c;是一个高度复杂的音乐制作环境。FL Studio免费&#xff0c;联合国音序器音频和MIDI每个复合编辑都是音乐。现代的DAW是一种非凡的野兽。首先&#xff0c;它在很大程度上把自己放在了(几乎)每个人记录过程的核心。其次&…

【计算机网络】——前言计算机网络发展的历程概述

主页点击直达&#xff1a;个人主页 我的小仓库&#xff1a;代码仓库 C语言偷着笑&#xff1a;C语言专栏 数据结构挨打小记&#xff1a;初阶数据结构专栏 Linux被操作记&#xff1a;Linux专栏 LeetCode刷题掉发记&#xff1a;LeetCode刷题 算法&#xff1a;算法专栏 C头…

【2023全网最全教程】web自动化测试入门

一、自动化测试基本介绍 1 自动化测试概述&#xff1a; 什么是自动化测试&#xff1f;一般说来所有能替代人工测试的方式都属于自动化测试&#xff0c;即通过工具和脚本来模拟人执行用例的过程。 2 自动化测试的作用 减少软件测试时间与成本改进软件质量通过扩大测试覆盖率…

hive 之select 中文乱码

此处的中文乱码和mysql的库表 编码 latin utf 无关。 直接上案例。 有时候我们需要自定义一列&#xff0c;有时是汉字有时是字母&#xff0c;结果遇到这种情况了。 说实话看到这真是糟心。这谁受得了。 单独select 没有任何问题。 这是怎么回事呢&#xff1f; 经过一番检查&…

【C++】-c++11的知识点(中)--lambda表达式,可变模板参数以及包装类(bind绑定)

&#x1f496;作者&#xff1a;小树苗渴望变成参天大树&#x1f388; &#x1f389;作者宣言&#xff1a;认真写好每一篇博客&#x1f4a4; &#x1f38a;作者gitee:gitee✨ &#x1f49e;作者专栏&#xff1a;C语言,数据结构初阶,Linux,C 动态规划算法&#x1f384; 如 果 你 …