竞赛 深度学习 opencv python 实现中国交通标志识别

文章目录

  • 0 前言
  • 1 yolov5实现中国交通标志检测
  • 2.算法原理
    • 2.1 算法简介
    • 2.2网络架构
    • 2.3 关键代码
  • 3 数据集处理
    • 3.1 VOC格式介绍
    • 3.2 将中国交通标志检测数据集CCTSDB数据转换成VOC数据格式
    • 3.3 手动标注数据集
  • 4 模型训练
  • 5 实现效果
    • 5.1 视频效果
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于深度学习的中国交通标志识别算法研究与实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 yolov5实现中国交通标志检测

整个互联网基本没有国内交通标志识别的开源项目(都是国外的),今天学长分享一个中国版本的实时交通标志识别项目,非常适合作为毕业设计~

在这里插入图片描述

2.算法原理

2.1 算法简介

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

输入端:在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;
基准网络:融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;
Neck网络:目标检测网络在BackBone与最后的Head输出层之间往往会插入一些层,Yolov5中添加了FPN+PAN结构;
Head输出层:输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

2.2网络架构

在这里插入图片描述

上图展示了YOLOv5目标检测算法的整体框图。对于一个目标检测算法而言,我们通常可以将其划分为4个通用的模块,具体包括:输入端、基准网络、Neck网络与Head输出端,对应于上图中的4个红色模块。YOLOv5算法具有4个版本,具体包括:YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x四种,本文重点讲解YOLOv5s,其它的版本都在该版本的基础上对网络进行加深与加宽。

  • 输入端-输入端表示输入的图片。该网络的输入图像大小为608*608,该阶段通常包含一个图像预处理阶段,即将输入图像缩放到网络的输入大小,并进行归一化等操作。在网络训练阶段,YOLOv5使用Mosaic数据增强操作提升模型的训练速度和网络的精度;并提出了一种自适应锚框计算与自适应图片缩放方法。
  • 基准网络-基准网络通常是一些性能优异的分类器种的网络,该模块用来提取一些通用的特征表示。YOLOv5中不仅使用了CSPDarknet53结构,而且使用了Focus结构作为基准网络。
  • Neck网络-Neck网络通常位于基准网络和头网络的中间位置,利用它可以进一步提升特征的多样性及鲁棒性。虽然YOLOv5同样用到了SPP模块、FPN+PAN模块,但是实现的细节有些不同。
  • Head输出端-Head用来完成目标检测结果的输出。针对不同的检测算法,输出端的分支个数不尽相同,通常包含一个分类分支和一个回归分支。YOLOv4利用GIOU_Loss来代替Smooth L1 Loss函数,从而进一步提升算法的检测精度。

2.3 关键代码

class Detect(nn.Module):stride = None  # strides computed during buildonnx_dynamic = False  # ONNX export parameterdef __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layersuper().__init__()self.nc = nc  # number of classesself.no = nc + 5  # number of outputs per anchorself.nl = len(anchors)  # number of detection layersself.na = len(anchors[0]) // 2  # number of anchorsself.grid = [torch.zeros(1)] * self.nl  # init gridself.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor gridself.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output convself.inplace = inplace  # use in-place ops (e.g. slice assignment)def forward(self, x):z = []  # inference outputfor i in range(self.nl):x[i] = self.m[i](x[i])  # convbs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()if not self.training:  # inferenceif self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()if self.inplace:y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xyy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # whelse:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xywh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # why = torch.cat((xy, wh, y[..., 4:]), -1)z.append(y.view(bs, -1, self.no))return x if self.training else (torch.cat(z, 1), x)def _make_grid(self, nx=20, ny=20, i=0):d = self.anchors[i].deviceif check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibilityyv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')else:yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()anchor_grid = (self.anchors[i].clone() * self.stride[i]) \.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()return grid, anchor_gridclass Model(nn.Module):def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):  # model, input channels, number of classessuper().__init__()if isinstance(cfg, dict):self.yaml = cfg  # model dictelse:  # is *.yamlimport yaml  # for torch hubself.yaml_file = Path(cfg).namewith open(cfg, encoding='ascii', errors='ignore') as f:self.yaml = yaml.safe_load(f)  # model dict# Define modelch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channelsif nc and nc != self.yaml['nc']:LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")self.yaml['nc'] = nc  # override yaml valueif anchors:LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')self.yaml['anchors'] = round(anchors)  # override yaml valueself.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelistself.names = [str(i) for i in range(self.yaml['nc'])]  # default namesself.inplace = self.yaml.get('inplace', True)# Build strides, anchorsm = self.model[-1]  # Detect()if isinstance(m, Detect):s = 256  # 2x min stridem.inplace = self.inplacem.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])  # forwardm.anchors /= m.stride.view(-1, 1, 1)check_anchor_order(m)self.stride = m.strideself._initialize_biases()  # only run once# Init weights, biasesinitialize_weights(self)self.info()LOGGER.info('')def forward(self, x, augment=False, profile=False, visualize=False):if augment:return self._forward_augment(x)  # augmented inference, Nonereturn self._forward_once(x, profile, visualize)  # single-scale inference, traindef _forward_augment(self, x):img_size = x.shape[-2:]  # height, widths = [1, 0.83, 0.67]  # scalesf = [None, 3, None]  # flips (2-ud, 3-lr)y = []  # outputsfor si, fi in zip(s, f):xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))yi = self._forward_once(xi)[0]  # forward# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # saveyi = self._descale_pred(yi, fi, si, img_size)y.append(yi)y = self._clip_augmented(y)  # clip augmented tailsreturn torch.cat(y, 1), None  # augmented inference, traindef _forward_once(self, x, profile=False, visualize=False):y, dt = [], []  # outputsfor m in self.model:if m.f != -1:  # if not from previous layerx = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layersif profile:self._profile_one_layer(m, x, dt)x = m(x)  # runy.append(x if m.i in self.save else None)  # save outputif visualize:feature_visualization(x, m.type, m.i, save_dir=visualize)return xdef _descale_pred(self, p, flips, scale, img_size):# de-scale predictions following augmented inference (inverse operation)if self.inplace:p[..., :4] /= scale  # de-scaleif flips == 2:p[..., 1] = img_size[0] - p[..., 1]  # de-flip udelif flips == 3:p[..., 0] = img_size[1] - p[..., 0]  # de-flip lrelse:x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale  # de-scaleif flips == 2:y = img_size[0] - y  # de-flip udelif flips == 3:x = img_size[1] - x  # de-flip lrp = torch.cat((x, y, wh, p[..., 4:]), -1)return pdef _clip_augmented(self, y):# Clip YOLOv5 augmented inference tailsnl = self.model[-1].nl  # number of detection layers (P3-P5)g = sum(4 ** x for x in range(nl))  # grid pointse = 1  # exclude layer counti = (y[0].shape[1] // g) * sum(4 ** x for x in range(e))  # indicesy[0] = y[0][:, :-i]  # largei = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indicesy[-1] = y[-1][:, i:]  # smallreturn ydef _profile_one_layer(self, m, x, dt):c = isinstance(m, Detect)  # is final layer, copy input as inplace fixo = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPst = time_sync()for _ in range(10):m(x.copy() if c else x)dt.append((time_sync() - t) * 100)if m == self.model[0]:LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  {'module'}")LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')if c:LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")def _initialize_biases(self, cf=None):  # initialize biases into Detect(), cf is class frequency# https://arxiv.org/abs/1708.02002 section 3.3# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.m = self.model[-1]  # Detect() modulefor mi, s in zip(m.m, m.stride):  # fromb = mi.bias.view(m.na, -1)  # conv.bias(255) to (3,85)b.data[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # clsmi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)def _print_biases(self):m = self.model[-1]  # Detect() modulefor mi in m.m:  # fromb = mi.bias.detach().view(m.na, -1).T  # conv.bias(255) to (3,85)LOGGER.info(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))# def _print_weights(self):#     for m in self.model.modules():#         if type(m) is Bottleneck:#             LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2))  # shortcut weightsdef fuse(self):  # fuse model Conv2d() + BatchNorm2d() layersLOGGER.info('Fusing layers... ')for m in self.model.modules():if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update convdelattr(m, 'bn')  # remove batchnormm.forward = m.forward_fuse  # update forwardself.info()return selfdef autoshape(self):  # add AutoShape moduleLOGGER.info('Adding AutoShape... ')m = AutoShape(self)  # wrap modelcopy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=())  # copy attributesreturn mdef info(self, verbose=False, img_size=640):  # print model informationmodel_info(self, verbose, img_size)def _apply(self, fn):# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffersself = super()._apply(fn)m = self.model[-1]  # Detect()if isinstance(m, Detect):m.stride = fn(m.stride)m.grid = list(map(fn, m.grid))if isinstance(m.anchor_grid, list):m.anchor_grid = list(map(fn, m.anchor_grid))return selfdef parse_model(d, ch):  # model_dict, input_channels(3)LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchorsno = na * (nc + 5)  # number of outputs = anchors * (classes + 5)layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch outfor i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, argsm = eval(m) if isinstance(m, str) else m  # eval stringsfor j, a in enumerate(args):try:args[j] = eval(a) if isinstance(a, str) else a  # eval stringsexcept NameError:passn = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gainif m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]:c1, c2 = ch[f], args[0]if c2 != no:  # if not outputc2 = make_divisible(c2 * gw, 8)args = [c1, c2, *args[1:]]if m in [BottleneckCSP, C3, C3TR, C3Ghost]:args.insert(2, n)  # number of repeatsn = 1elif m is nn.BatchNorm2d:args = [ch[f]]elif m is Concat:c2 = sum(ch[x] for x in f)elif m is Detect:args.append([ch[x] for x in f])if isinstance(args[1], int):  # number of anchorsargs[1] = [list(range(args[1] * 2))] * len(f)elif m is Contract:c2 = ch[f] * args[0] ** 2elif m is Expand:c2 = ch[f] // args[0] ** 2else:c2 = ch[f]m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # modulet = str(m)[8:-2].replace('__main__.', '')  # module typenp = sum(x.numel() for x in m_.parameters())  # number paramsm_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number paramsLOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # printsave.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelistlayers.append(m_)if i == 0:ch = []ch.append(c2)return nn.Sequential(*layers), sorted(save)

3 数据集处理

中国交通标志检测数据集CCTSDB,由长沙理工大学提供,包括上万张有标注的图片

推荐只使用前4000张照片,因为后面有很多张图片没有标注,需要一张一张的删除,太过于麻烦,所以尽量用前4000张图

3.1 VOC格式介绍

VOC格式主要包含三个文件夹Annotations,ImageSets,JPEGImages,主要适用于faster-
rcnn等模型的训练,ImageSets下面有一个Main的文件夹,如下图,一定按照这个名字和格式建好文件夹:

  • Annotations:这里是存放你对所有数据图片做的标注,每张照片的标注信息必须是xml格式。

  • JPEGImages:用来保存你的数据图片,一定要对图片进行编号,一般按照voc数据集格式,采用六位数字编码,如000001.jpg、000002.jpg等。

  • ImageSets:该文件下有一个main文件,main文件下有四个txt文件,分别是train.txt、test.txt、trainval.txt、val.txt,里面都是存放的图片号码。

在这里插入图片描述

3.2 将中国交通标志检测数据集CCTSDB数据转换成VOC数据格式

将标注的数据提取出来并且排序,并将里面每一行分割成一个文件

在这里插入图片描述

3.3 手动标注数据集

如果为了更深入的学习也可自己标注,但过程相对比较繁琐,麻烦。

以下简单介绍数据标注的相关方法,数据标注这里推荐的软件是labelimg,通过pip指令即可安装,相关教程可网上搜索


pip install labelimg

在这里插入图片描述

4 模型训练

修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数

在这里插入图片描述

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。

在这里插入图片描述

5 实现效果

5.1 视频效果

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/102946.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Kubernetes使用OkHttp客户端进行网络负载均衡

在一次内部Java服务审计中&#xff0c;我们发现一些请求没有在Kubernetes&#xff08;K8s&#xff09;网络上正确地实现负载均衡。导致我们深入研究的问题是HTTP 5xx错误率的急剧上升&#xff0c;由于CPU使用率非常高&#xff0c;垃圾收集事件的数量很多以及超时&#xff0c;但…

ctfshow-ssti

web361 名字就是考点&#xff0c;所以注入点就是name 先测试一下存不存在ssti漏洞 利用os模块&#xff0c;脚本 查看一下子类的集合 ?name{{.__class__.__base__.__subclasses__()}} 看看有没有os模块&#xff0c;查找os 利用这个类&#xff0c;用脚本跑他的位置 import …

LeetCode(力扣)416. 分割等和子集Python

LeetCode416. 分割等和子集 题目链接代码 题目链接 https://leetcode.cn/problems/partition-equal-subset-sum/ 代码 class Solution:def canPartition(self, nums: List[int]) -> bool:sum 0dp [0]*10001for num in nums:sum numif sum % 2 1:return Falsetarget …

arm实验

设置按键中断&#xff0c;按键1按下&#xff0c;LED亮&#xff0c;再次按下&#xff0c;灭 按键2按下&#xff0c;蜂鸣器叫&#xff0c;再次按下&#xff0c;停 按键3按下&#xff0c;风扇转&#xff0c;再次按下&#xff0c;停 头文件 #ifndef __CTRL_KEY_H__ #define __CT…

Learning Sample Relationship for Exposure Correction 论文阅读笔记

这是中科大发表在CVPR2023的一篇论文&#xff0c;提出了一个module和一个损失项&#xff0c;能够提高现有exposure correction网络的性能。这已经是最近第三次看到这种论文了&#xff0c;前两篇分别是CVPR2022的ENC&#xff08;和这篇文章是同一个一作作者&#xff09;和CVPR20…

cap分布式理论

cap 理论 cap是实现分布式系统的思想。 由3个元素组成。 Consistency&#xff08;一致性&#xff09; 在任何对等 server 上读取的数据都是最新版&#xff0c;不会读取出旧数据。比如 zookeeper 集群&#xff0c;从任何一台节点读取出来的数据是一致的。 Availability&…

Unity基于C#事件委托机制

事件委托是一种用于实现观察者模式的设计模式&#xff0c;它允许对象在发生特定事件时通知其他对象。在Unity中&#xff0c;事件委托机制为开发者提供了一种简单而有效的方式来处理游戏中的事件和交互。 对啦&#xff01;这里有个游戏开发交流小组里面聚集了一帮热爱学习游戏的…

解决方案 | 法大大电子签精准击破销售场景签约难题

新商业形态及新交易模式不断涌现&#xff0c;电子签已经成为现代商业活动中不可或缺的一部分。特别是在销售场景中&#xff0c;电子签的应用不仅可以提高销售效率&#xff0c;还可以降低成本&#xff0c;提高客户满意度。本文将详细分析电子签在销售场景中的应用价值能力&#…

快速解决“找不到msvcr120.dll无法执行代码”问题,总结5解决方法

计算机已经成为我们生活和工作中不可或缺的一部分。然而&#xff0c;在使用计算机的过程中&#xff0c;我们常常会遇到各种问题&#xff0c;其中之一就是找不到msvcr120.dll文件。这个问题可能会可能导致计算机程序软件&#xff0c;游戏无法正常运行&#xff0c;影响到我们的工…

(十四)VBA常用基础知识:当前excel文件所有sheet循环,获取sheet名,获取最大行数最大列数

获取当前excel的所有sheet以及sheet名 Sub test()Dim ws As WorksheetFor Each ws In Worksheetsws.ActivateDebug.Print ws.NameNext ws End Sub 输出结果&#xff1a; Sheet1 Sheet2 Sheet3 Sheet4 Sheet52.获取最大行数 首先要明白取最大行的方式&#xff0c;为什么这样取…

ceph 分布式存储与部署

目录 一、存储基础&#xff1a; 1.单机存储设备&#xff1a; 2. 单机存储的问题&#xff1a; 3. 商业存储解决方案&#xff1a; 4. 分布式存储&#xff1a; 5. 分布式存储的类型&#xff1a; 二、Ceph 简介&#xff1a; 三、Ceph 优势&#xff1a; 四、Ceph 架构&#xff1a…

01 时钟配置初始化,debug

1. 开启debug series&#xff0c;否则只能下载一次&#xff0c;再次下载要配置boot 2.f0外部时钟配置 h750 配置 实测可用

FPGA面试题(1)

一.FPGA内部结构 可编程I/OPLL锁相环&#xff08;其作用为&#xff1a;分频&#xff0c;倍频&#xff0c;相位调节、占空比&#xff09;逻辑阵列块LAB&#xff08;每个LAB由16个逻辑器件LE组成&#xff0c;每个LE包括一个查找表LUT和一个RAM构成。Cyclone IV EP4CE6F17C8中包含…

【Spring AOP】统一异常处理

统一异常处理 统⼀异常处理使⽤的是 ControllerAdvice ExceptionHandler 来实现的&#xff0c; 类上面加上 ControllerAdvice 注解表示控制器通知类方法上面加上 ExceptionHandler 表示异常处理器&#xff0c;并添加异常返回的业务代码 两个结合表示当出现异常的时候执⾏某个…

Android终极大招之全面取代drawble文件实现View圆角背景样式的新方案

简介 最近一直忙于音视频SDK的开发&#xff0c;遇到很多问题&#xff0c;简单来说&#xff0c;就是怎么让别人接入SDK时越简单越好。相信大多数Android开发都会遇到一个场景&#xff0c;给TextView或Button添加背景颜色&#xff0c;修改圆角&#xff0c;描边等需求。一看到这样…

React 组件传 children 的各种方案

自定义组件的时候往往需要传 children&#xff0c;由于写法比较多样&#xff0c;我就总结了一下。 方案列表 1. 类组件1.1 类组件&#xff0c;不使用解构1.2 类组件&#xff0c;使用解构 2. 函数组件2.1 函数组件&#xff0c;不使用解构2.2 函数组件&#xff0c;外部解构2.3 函…

docker 登录本地仓库harbor问题

1、报错如下&#xff1a; 添加目标harbor 仓库的hosts vim /etc/hosts 2、报错如下&#xff1a; 添加修改/etc/docker/daemon.json文件中的 insecure-registries vim /etc/docker/daemon.json 然后 systemctl daemon-reload systemctl restart docker再次登录

HQChart实战教程66-动态调整HQChart布局大小

HQChart实战教程66-动态调整HQChart布局大小 需求小程序h5AppHQChart插件源码地址 需求 在不销毁hqchart实例的情况下&#xff0c;动态调整K线图或分时图的大小&#xff0c; 如下图&#xff0c;把图1的K线图大小调整为图2的大小 图1 图2 小程序 调整画布大小&#xff0c;并…

(c语言进阶)指针的进阶

一.字符指针 1.一般应用 &#xff08;1&#xff09;%c的应用 &#xff08;2&#xff09;%s的应用 字符指针没有权限通过解引用去改变指针指向的值 2.笔试题 题目&#xff1a;判断输出结果 int main() { const char* p1 "abcdef"; const char* p2 "…

前端开发工具vscode

一、下载安装 https://code.visualstudio.com/ 二、安装插件 三、使用 ①、创建一个空目录 ②、利用vscode工具打开该目录 ③、将该目录设置为工作区 在工作区中添加文件&#xff0c;还可以进行浏览器访问&#xff08;提前安装了Live Server插件&#xff09; 为工具…