WebRTC 的核心:RTCPeerConnection

WebRTC 的核心:RTCPeerConnection

  • WebRTC 的核心:RTCPeerConnection
    • 创建 RTCPeerConnection 对象
    • RTCPeerConnection 与本地音视频数据绑定
    • 媒体协商
    • ICE
      • 什么是 Candidate?
      • 收集 Candidate
      • 交换 Candidate
      • 尝试连接
    • SDP 与 Candidate 消息的互换
    • 远端音视频渲染
    • 参考

WebRTC 的核心:RTCPeerConnection

RTCPeerConnection 是 WebRTC API 中的一个对象,它提供了两个浏览器之间的实时通信。它使用音频、视频和数据流来进行点对点通讯,没有中介服务器的参与。这是一个极其有用的特性,使得实时通信变得更加高效和私密。

RTCPeerConnection的作用是在两个浏览器之间建立WebRTC通信通道。它使用ICE(Interactive Connectivity Establishment)协议决定浏览器之间的最佳路径来传输音频、视频和数据流。它让浏览器之间的网络连接变得简单、快捷和高效。
RTCPeerConnection API可以用于:

  1. 视频会议
  2. 实时游戏
  3. 文件共享
  4. 流媒体
  5. 实时语音聊天

创建 RTCPeerConnection 对象

语法:

new RTCPeerConnection()
new RTCPeerConnection(configuration)

参数 configuration 是一个 JSON 对象,用于提供配置新连接的选项。

在这里插入图片描述

  1. iceServers:一个由 RTCIceServer 对象组成的数组,每个对象描述一个可能被 ICE 代理使用的服务器。这些通常是 STUN 或 TURN 服务器。如果未指定,则将在没有可用的 STUN 或 TURN 服务器的情况下进行连接尝试,这将连接限制为本地对等点。
  2. iceTransportPolicy:当前的 ICE 传输策略。如果未指定策略,则默认使用 all 策略,允许考虑所有的候选。可能的值有:
    • “all”:所有的 ICE 候选都会被考虑。
    • “public”:只有拥有公共 IP 地址的 ICE 候选才会被考虑,已被移除。
    • “relay”:只有 IP 地址被中继的 ICE 候选,例如那些通过 STUN 或 TURN 服务器传递的,才会被考虑。
  3. bundlePolicy:指定当远程对等点与 SDP BUNDLE 标准不兼容时,应如何处理候选的协商。如果远程端点可以感知 BUNDLE,则在协商完成时,所有媒体轨道和数据通道都将捆绑到单个传输上,而不管使用何种策略,并且最初创建的任何多余传输都将在此时关闭。用技术术语来说,BUNDLE 允许两个对等点之间的所有媒体流流经单个 5 元组;也就是说,使用相同的传输协议从一个对等点的单个 IP 和端口到另一个对等点的单个 IP 和端口。如果假定为不平衡(balanced),这必须是以下字符串值之一:
    • “balanced”:ICE 代理最初为每一种内容类型(音频、视频、数据通道)创建一个 RTCDtlsTransport。如果远程端点无法感知 BUNDLE,那么每一个 DTLS 传输用于处理一种数据类型的通信。
    • “max-compat”:ICE 代理最初为每个媒体轨道创建一个 RTCDtlsTransport,对数据通道则创建一个单独的传输。如果远程端点无法感知 BUNDLE,那么对于所有的内容都会协商一个单独的 DTLS 传输。
    • “max-bundle”:ICE 代理最初仅创建一个 RTCDtlsTransport 来承载所有的 RTCPeerConnection 的数据。如果远程端点无法感知 BUNDLE,那么仅会协商一个轨道而忽略其余的轨道。
  4. rtcpMuxPolicy:收集 ICE 候选时使用的 RTCP mux 策略,以支持非复用的 RTCP。可能的值有:
    • “require”:告诉 ICE 代理仅收集 RTP 的 ICE 候选,并在它们之上多路复用 RTCP。如果远程对等点不支持 RTCP 多路复用,则会话协商失败。这是默认值。
    • “negotiate”:指示 ICE 代理收集 RTP 和 RTCP 候选。如果远程对等点支持 RTCP 复用,那么 RTCP 候选将在相应的 RTP 候选之上多路复用。否则,分别返回 RTP 和 RTCP 候选。
  5. peerIdentity:一个字符串,用于指定 RTCPeerConnection 目标对等点的标识。如果设置了该值(其默认为 null),则在成功验证远程对等点的身份为给定的名称之前,RTCPeerConnection 不会与其建立连接。
  6. certificates:一个由 RTCCertificate 对象组成的数组,用于连接的身份验证。如果未指定该属性,则会为每一个 RTCPeerConnection 实例自动创建一组证书。尽管一个给定的连接只使用一个证书,但提供多个证书可以支持多种算法,从而提高某些情况下的连接成功的机率。此配置选项在首次指定后便不能更改;一旦设置了证书,此属性将在之后调用 RTCPeerConnection.setConfiguration() 时被忽略。
  7. iceCandidatePoolSize:一个无符号 16 位整数,其指定了预获取的 ICE 候选池的大小。其默认值为 0(表示不会发生候选的预获取)。如果这个值发生变化了,那么会重新收集候选者。

RTCPeerConnection 与本地音视频数据绑定

RTCPeerConnection 提供2种方法进行数据绑定:addTrack() 和 addStream()。

其中 addStream() 已经被 WebRTC 标记为过时,因此建议使用 addTrack() 方法。

当客户端从服务端接收到 joined 消息后,它会创建 RTCPeerConnection 对象,然后调用 bindTrack() 函数将其与之前通过 getUserMedia() 采集到的音视频数据绑定:

function bindTrack() {...ls.getTracks().foreach((track) => {pc.addTrack(track, ls);...})...
}

其中,ls 是一个全局变量,当通过 getUserMedia() 采集到 MediaStream 后,需要将其交由 ls 管理;pc 是 RTCPeerConnection 的缩写,也是一个全局变量,当 RTCPeerConnection 创建好后,交由 pc 管理。

媒体协商

当 RTCPeerConnection 对象与音视频数据绑定后,紧接着需要进行媒体协商。看双方都支持那些编码方式,支持哪些分辨率等。协商的方法是通过信令服务器交换媒体能力信息,交换的内容是 SDP 格式的。

在 WebRTC 中,媒体协商是有严格的协商顺序的,如下图所示:

在这里插入图片描述

整个过程分为 8 步:

  1. Amy 调用 createOffer 方法创建 offer 消息。offer 消息中的内容是 Amy 的 SDP 信息。
  2. Amy 调用 setLocalDescription 方法,将本端的 SDP 信息保存起来。
  3. Amy 将 offer 消息通过信令服务器传给 Bob。
  4. Bob 收到 offer 消息后,调用 setRemoteDescription 方法将其存储起来。
  5. Bob 调用 createAnswer 方法创建 answer 消息, 同样,answer 消息中的内容是 Bob 的 SDP 信息。
  6. Bob 调用 setLocalDescription 方法,将本端的 SDP 信息保存起来。
  7. Bob 将 anwser 消息通过信令服务器传给 Amy。
  8. Amy 收到 anwser 消息后,调用 setRemoteDescription 方法,将其保存起来。

通过以上步骤就完成了通信双方媒体能力的交换。

ICE

当媒体协商完成后,WebRTC 就开始建立网络连接了,其过程叫 ICE(Interactive Connectivity Establishment,交互式连接建立)。更确切地说,ICE 是在各端调用 setRemoteDescription 方法后就开始了。其操作过程如下:

  1. 收集 Candidate
  2. 交换 Candidate
  3. 按优先级尝试连接

什么是 Candidate?

Candidate 是 WebRTC API 的接口之一,表示用于建立 RTCPeerConnection 的候选交互连接建立(ICE)的配置信息。它是至少包含 {address, port, protocol} 三元组的一个信息集。

RTCIceCandidate 实例属性:

  1. candidate:表示用于连接检查的候选者的传输地址的字符串。
    格式为:a=candidate:{foundation} {component} {protocol} {priority} {ip} {port} typ {type} generation {generation} ufrag {username} network_id {id} network_cost {cost}。
    以如下 candidate 为例说明其代表的含义:a=candidate:1221703924 1 udp 2122260223 192.168.0.105 51417 typ host generation 0 ufrag Q8Wv network-id 1 network-cost 10。
    typ host 表示本地候选者,使用的 IP 是 192.168.0.105,端口为 51417,使用 UDP 协议,其优先级为 2122260223,generation 表示代数,初始值为 0,用户名为 Q8Wv,如果更新 candidate 则 generation 值会递增,替换老的 candidate。
  2. sdpMid:表示候选者的媒体流标识标签的字符串,该标签在候选者关联的组件中唯一标识媒体流,如果不存在这样的关联,则为 null。
  3. sdpMLineIndex:如果值不为 null,sdpMLineIndex 表示 SDP 中候选者关联的从零开始的媒体描述索引编号。

其他更多属性见于:RTCIceCandidate

WebRTC 还将 Candidate 分为了四种类型:host、srflx、prflx、relay,它们的优先级依次递减。假如 WebRTC 收集到两个 Candidate,一个是 host 类型,另一个是 relay 类型,那么 WebRTC 会先尝试与 host 类型的 Candidate 建立连接,如果不成功,才会使用 relay 类型的 Candidate。

收集 Candidate

WebRTC 收集 Candidate 时有几种途径:

  1. host 类型的 Candidate 由主机的网卡个数决定。一般一个网卡对于一个 IP 地址,每个 IP 地址随机分配一个端口从而生成一个 host 类型的 Candidate;
  2. srflx 类型的 Candidate 由 STUN 服务器获得的 IP 地址和端口生成;
  3. relay 类型的 Candidate 由 TRUN 服务器获得的 IP 地址和端口生成。

收集到 Candidate 后,为了通知上层,WebRTC 还在 RTCPeerConnection 对象中提供了 onicecandidate 事件。为了将收集到的 Candidate 交换给对端,需要为 onicecandidate 事件设置一个回调函数:

pc.onicecandidate = (e) => {if (e.candidate) {...}
}

通过该回调函数就可以获得 WebRTC 底层收集到的所有 Candidate 了。同时,还可以在函数内实现发送给对端的操作。

交换 Candidate

WebRTC 收集 Candidate 后,会通过信令系统将它们发送给对端。对端接收后,会与本地的 Candidate 形成 CandidatePair(连接候选者对)。

有了 CandidatePair,WebRTC 就可以开始尝试建立连接了。

注意,Candidate 的交换不是等所有 Candidate 收集好了再进行的,而是边收集边交换。

尝试连接

当 WebRTC 形成 CandidatePair 后,便开始尝试进行连接。一旦发现一个可以连通的 CandidatePair 时,就不再进行其他的连接尝试了,但发现新的 Candidate 时仍然可以继续交换。

SDP 与 Candidate 消息的互换

媒体协商和 ICE 都需要通信双方做信息的交换,如交换 SDP 和 Candidate。这种信息交换使用的也是信令系统,只不过需要为这种需求专门设置一个新的信令,即 message。

信息交换的过程:

  1. 发起方向信令服务器发送 message;
  2. 服务器收到 message 后不做任何处理,直接转发给目标用户;
  3. 目标用户接收 message。

客户端发送消息:

function sendMsg(roomid, data) {...socket.emit('message', roomid, data);
}

服务器转发:

socket.on('message', (room, data) => {socket.to(room).emit('message', room, data);
});

客户端接收:

socket.on('message', (room, data) => {...if (data.hasOwnProperty('type') && data.type === 'offer') {...} else if (data.hasOwnProperty('type') && data.type === 'answer') {...} else if (data.hasOwnProperty('type') && data.type === 'candidate') {...} else {...}
});

远端音视频渲染

当各端将收集到的 Candidate 通过信令系统交换给对方后,WebRTC 内部就开始就开始尝试建立连接了。连接一旦建成,音视频数据就开始源源不断地由发送端发送给接收端。

每当有远端的音视频数据传过来时,RTCPeerConnection 对象的 ontrack() 事件就会被触发。因此只需要给 ontrack() 事件设置一个回调函数,就可以拿到远端的 MediaStream 了。再将远端音视频流赋值给本地 <video> 标签的 srcObject 属性,就可以播放音视频数据了。

具体代码如下所示:

function getRemoteStream(mediaStream) {...// 将远端音视频流赋值给本地 <video> 标签的 srcObject 属性videoElement.srcObject = mediaStream;
}
let pc = new RTCPeerConnection(...);
...
pc.ontrack = getRemoteStream;
...

参考

  1. https://developer.mozilla.org/zh-CN/docs/Web/API/RTCPeerConnection
  2. https://www.cnblogs.com/ssyfj/p/14811253.html
  3. https://webrtc.org.cn/webrtc-tutorial-2-signaling-stun-turn/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/9948.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

线程同步--互斥锁,读写锁

线程同步 基本概念 线程的能力在于能够方便地通过全局变量或共享内存来交换信息&#xff0c;但这也带来了并发控制的复杂性&#xff0c;主要表现在如何安全地管理多个线程对共享资源的访问。这里涉及到几个关键的概念和技术&#xff1a; 临界区&#xff08;Critical Section…

jenkins部署想定报错

报错&#xff1a; 解决办法&#xff1a; 登录被编译的设备&#xff0c;清楚旧代码&#xff0c;在重新执行

Dependencies:查找项目中dll关联文件是否缺失。

前言 Dependencies工具作为一款优秀的DLL解析工具&#xff0c;能让你很直观地看到DLL的相关信息&#xff0c;如具备哪些功能函数、参数&#xff0c;又比如该DLL基于哪些DLL运行。判断该dll基于哪些dll运行&#xff0c;如果基于的dll丢失&#xff0c;那么就会提示。就能判断缺少…

【Ubuntu永久授权串口设备读取权限‘/dev/ttyUSB0‘】

Ubuntu永久授权串口设备读取权限 1 问题描述2 解决方案2.1 查看ttyUSB0权限&#xff0c;拥有者是root&#xff0c;所属用户组为dialout2.2 查看dialout用户组成员&#xff0c;如图所示&#xff0c;普通用户y不在dialout组中2.3 将普通用户y加入dialout组中2.4 再次查看dialout用…

Redis-新数据类型-Hyperloglog

新数据类型-Hyperloglog 简介 在我们做站点流量统计的时候一般会统计页面UV(独立访客:unique visitor)和PV(即页面浏览量&#xff1a;page view)。 什么是基数&#xff1f; 数据集&#xff5b;1&#xff0c;2&#xff0c;5&#xff0c;7&#xff0c;5&#xff0c;7&#xff…

AI绘画的基本原理是什么?

目录 一、AI绘画的基本原理是什么&#xff1f; 二、Python中有几个库可以用于AI绘画&#xff1f; 三、OpenCV画一个人形 四、AI画的红苹果 一、AI绘画的基本原理是什么&#xff1f; AI绘画的原理基于机器学习和人工智能技术&#xff0c;通过这些技术模型能够理解文本描述并…

vivado 配置存储器支持-Artix-7 配置存储器器件

配置存储器支持 本章主要讲解 Vivado 软件支持的各种非易失性器件存储器。请使用本章作为指南 &#xff0c; 按赛灵思系列、接口、制造商、 密度和数据宽度来为您的应用选择适用的配置存储器器件。 Artix-7 配置存储器器件 下表所示闪存器件支持通过 Vivado 软件对 A…

HTTP 1.1 与 HTTP 1.0

什么是HTTP HTTP 就是一个 超文本传输协议 协议 : 双方 约定 发送的 域名 数据长度 连接(长连接还是短连接) 格式(UTF-8那些) 传输 :数据虽然是在 A 和 B 之间传输&#xff0c;但允许中间有中转或接力。 超文本:图片、视频、压缩包,在HTTP里都是文本 HTTP 常见状态码 比如 20…

在go-zero中使用jwt

gozero使用jwt 两个步骤 获取token验证token 前端获取token 先编写 jwt.api 文件&#xff0c;放在api目录下 syntax "v1"info (title: "type title here"desc: "type desc here"author: "type author here"email: &quo…

工控组态技术:实现工业自动化控制的重要手段

体验地址&#xff1a;by组态[web组态插件] 工控组态技术是一种应用于工业自动化控制领域的重要技术&#xff0c;它通过将各种不同的硬件设备和软件系统进行组合和配置&#xff0c;实现了工业生产过程的自动化控制和优化。 随着工业技术的不断发展和进步&#xff0c;工控组态技…

拥有蝴蝶效应的爬虫如何进行防护

美国气象学家爱德华罗伦兹&#xff08;Edward N.Lorenz&#xff09;1963年在一篇提交纽约科学院的论文中分析了一个叫做蝴蝶效应的理论&#xff1a;“一个气象学家提及&#xff0c;如果这个理论被证明正确&#xff0c;一只海鸥扇动翅膀足以永远改变天气变化。”在以后的演讲和论…

IP 地理定位神话与事实

ip地理定位是一项技术&#xff0c;用于通过访问设备的ip地址来获取地理位置信息&#xff0c;例如国家、城市、经纬度等。该技术广泛应用于网站内容自定义、广告定位、网络安全和用户分析等领域。它通过与包含ip地址和地理位置映射的大型数据库进行查询来工作&#xff0c;但在准…

软件测评报告:除了软件测评中心,还有哪些选择?

传统的观念中&#xff0c;软件测评中心往往被视为进行软件测评的首选机构。然而&#xff0c;随着技术的发展和市场的扩大&#xff0c;除了软件测评中心&#xff0c;越来越多的机构和平台也提供了专业的软件测评服务。本文将探讨除了软件测评中心之外&#xff0c;还有哪些地方可…

工作中使用Optional处理空指针异常

工作中使用Optional处理空指针异常 实体类以前对空指针的判断Optional处理空指针测试结果 实体类 package po;import lombok.AllArgsConstructor; import lombok.Data; import lombok.NoArgsConstructor;import java.io.Serializable;Data AllArgsConstructor NoArgsConstruct…

单调栈:(C++)

在题目的要求中&#xff0c;存在先进后出&#xff08;即在前面的数据需要遍历到后面的某一数据时才能确定计算值&#xff09;单调栈在一部分解题场景中避免了暴力解法的高时间复杂度问题&#xff0c;但是在做题过程中视情况而定&#xff0c;有些题目的最优解不一定使用单调栈&a…

2024下载旧版本谷歌浏览器和谷歌驱动器chromedriver,亲测有效

2024下载旧版本谷歌浏览器和谷歌驱动器chromedriver,亲测有效 1. 下载旧版本谷歌浏览器 找了很多博客&#xff0c;实验了很多种&#xff0c;我发现最有效的是下面的网址&#xff0c;可能需要一些科技。 但是下载下来的谷歌浏览器版本是ok的。拿来就能用&#xff0c;亲测有效…

QT创造一个新的类(柱状图的类),并关联属性和方法

1.以在UI上添加柱状图的类为例&#xff08;Histogram&#xff09; #ifndef STUDY_HISTOGRAM_H #define STUDY_HISTOGRAM_H#include <QVector> #include <QWidget>// 前向声明 QT_BEGIN_NAMESPACE class QColor; class QRect; class QString; class QPaintDevice; …

【机器学习300问】84、AdaGrad算法是为了解决什么问题?

神经网络的学习的目的是找到使损失函数的值尽可能小的参数。这是寻找最优参数的问题&#xff0c;解决这个问题的过程称为最优化。因为参数空间非常复杂&#xff0c;无法轻易找到最优解&#xff0c;而且在深度神经网络中&#xff0c;参数的数量非常庞大&#xff0c;导致最优化问…

【SpringBoot篇】基于Redis分布式锁的 误删问题 和 原子性问题

文章目录 &#x1f354;Redis的分布式锁&#x1f6f8;误删问题&#x1f388;解决方法&#x1f50e;代码实现 &#x1f6f8;原子性问题&#x1f339;Lua脚本 ⭐利用Java代码调用Lua脚本改造分布式锁&#x1f50e;代码实现 &#x1f354;Redis的分布式锁 Redis的分布式锁是通过利…

基于FPGA的音视频监视器,音视频接口采集器的应用

① 支持1路HDMI1路SDI 输入 ② 支持1路HDMI输出 ③ 支持1080P高清屏显示实时画面以 及叠加的分析结果 ④ 支持同时查看波形图&#xff08;亮度/RGB&#xff09;、 直方图、矢量图 ⑤ 支持峰值对焦、斑马纹、伪彩色、 单色、安全框遮幅标记 ⑥ 支持任意缩放画面&#xff0c;支…