Linux:进程等待 进程替换

Linux:进程等待 & 进程替换

    • 进程等待
      • wait接口
      • status
      • waitpid接口
    • 进程替换
      • exec系列接口


当一个进程死亡后,会变成僵尸进程,此时进程的PCB被保留,等待父进程将该PCB回收。那么父进程要如何回收这个僵尸进程的PCB呢?父进程通过进程等待的方式,来回收子进程的PCB,并得知子进程的退出信息


进程等待

进程等待用于回收子进程的资源,避免子进程的PCB一直占用资源,并且可以获取子进程的退出信息,得知子进程任务的执行情况,进程等待主要通过两个系统调用接口waitwaitpid来完成。

wait接口

使用wait接口,需要包含头文件<sys/types.h><sys/wait.h>,其函数原型为:

pid_t wait(int* stat_loc);

其接收一个int*指针,该参数是一个输出型参数,用于返回子进程的相关推出信息。

wait的返回值是一个int类型:

  • 返回值大于0:返回等待到的子进程的pid
  • 返回值小于0:等待失败

用一段代码来演示一下:

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>int main()
{pid_t id = fork();if(id == 0){int cnt = 5;printf("I'm child, pid = %d\n", getpid());while(cnt--){sleep(1);printf("%d\n", cnt);}return 5;}int status = 0;int ret = wait(&status);printf("wait over! status = %d, ret = %d\n", status, ret);return 0;
}

以上代码中,先通过fork创建了一个子进程,子进程进入if语句,进行五秒倒计时,然后退出,并且退出码为-5。父进程则通过wait函数进行等待,传入指针&status,接收返回值ret,最后输出statusret的值。

输出结果:

在这里插入图片描述

首先,子进程的pid34890,而wait的返回值就是子进程的pid。其次,status一开始被初始化为0wait之后,status = 1280,可知wait确实会修改传入的参数。

而这中间还有一个细节,那就是子进程总共sleep了五秒,而父进程在等待的这五秒中,啥事也没干,就等着子进程结束,然后对它进行回收,这个过程父进程处于阻塞状态,称为阻塞等待

简单了解wait后,那么现在的问题就是,status为什么是1280

status

status要当作一个位图来看:
在这里插入图片描述

  • 灰色部分:status是一个int类型,占32比特,但是后16比特是无效的,不填入任何内容
  • 黄色部分:第8 - 15位,共8比特,用于表示wait到的子进程的退出码
  • 绿色部分:第7位,core dump标志位本博客不关心该位置
  • 蓝色部分:第0 - 6位,共7比特,用户表示wait到的子进程的退出信号

那么我们要从status中提取出退出码退出信号,就要对其进行位操作:

status直接与01111111进行按位与&,就能得到退出信号01111111的十六进制表示为0X7F

int sig = status & 0x7F;

status右移8位后,与11111111进行按位与&,就能得到退出码11111111的十六进制表示为0XFF

int code = (status >> 8) & 0xFF;

现在在代码的最后加上这样一段:

int sig = status & 0x7F;
int code = (status >> 8) & 0xFF;printf("exit code = %d, signal = %d\n", code, sig);

现在运行一下进程:

在这里插入图片描述

现在我们可以看到,子进程的退出码为5,退出信号为0了。你也可以尝试在另外一个窗口对进程发送信号,看看信号接收是否准确,本博客不演示了。

Linux还给用户提供了两个宏函数,用于检测status

WIFEXITED:检测进程是否正常退出,返回一个布尔值,如果进从正常退出,返回真
WEXITSTATUS:提取子进程的退出码,也就是第8 - 15

if(WIFSIGNALED(status))printf("exit code = %d\n", WEXITSTATUS(status));
elseprintf("子进程退出异常...\n");

这样就可以更简单的提取错误码了。


waitpid接口

进程等待的另外一个接口是waitpid接口,需要包含头文件<sys/types.h><sys/wait.h>,其函数原型为:

pid_t waitpid(pid_t pid, int* stat_loc, int options);

相比于wait接口,该接口功能更丰富和强大,但是使用也更加麻烦。

一个进程是可以有多个子进程的,一个wait只能等待一个子进程,如果有多个子进程,那么wait函数等待第一个结束的子进程。waitpid则是针对pid来对进程进行等待

其第一个参数传入子进程的pid,第二个参数用于接收推出信息,也就是刚刚的status,第三个参数用于控制等待的模式。

现在我们先用以下代码来验证一下waitwaitpid的区别:

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>int main()
{pid_t id1 = fork();if(id1 == 0){printf("I'm child1, pid = %d\n", getpid());sleep(5);return 0;}pid_t id2 = fork();if(id2 == 0){printf("I'm child2, pid = %d\n", getpid());sleep(1);return 0;}int status = 0;int ret = wait(&status);printf("wait over! pid = %d\n", ret);sleep(10);return 0;
}

以上代码中,我们通过fork创建了两个子进程,第一个子进程输出自己的pid后会sleep五秒,而第二个子进程输出pidsleep一秒。父进程只wait一次,最后父进程输出wait的返回值,而返回值就是等待到的子进程的pid,这样就可以判断wait到了哪一个子进程。

输出结果:

在这里插入图片描述

child1pid = 35042child2pid = 35043,而wait的返回值为35043,说明wait到了第二个进程。因为第二个进程先结束,所以被wait先接收了

现在我们把wait改为waitpid

int status = 0;
int ret = waitpid(id1, &status, 0);

现在我们通过waitpid的第一个参数,指定等待id1,也就是第一个子进程,其第三个参数先设为0,后续讲解该参数的作用。

输出结果:

在这里插入图片描述

这一次返回值和child1匹配上了,可以说明虽然child1更晚结束,但是waitpid只会等待指定的进程,如果有子进程先结束了,waitpid也不会回收它。

简单了解waitpid后,我们再来看看第三个参数。第三个参数用于控制进程等待的模式:

  • 0:进行阻塞等待
  • WNOHANG:进行非阻塞等待

我在讲解wait时,简单提到了阻塞等待,也就是父进程在wait的时候,什么也不做,进入阻塞状态,直到wait成功。

而非阻塞等待不一样,进行非阻塞等待时,如果本次waitpid没有等待到,那么父进程不会阻塞,waitpid直接返回0,表示本次等待没有等待到子进程。此时父进程就可以空出时间去完成别的任务,而不是傻乎乎地死等了。

示例:

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>int main()
{pid_t id = fork();if(id == 0){printf("I'm child, pid = %d\n", getpid());sleep(5);return 0;}int status = 0;while(1){sleep(1);int ret = waitpid(id, &status, WNOHANG);if(ret == 0){printf("子进程未结束,执行其他任务...\n");//执行其他任务}else if (ret > 0){printf("wait over! pid = %d\n", ret);break;}else{printf("waitpid错误!\n");break;}}return 0;
}

以上代码中先通过fork创建了一个子进程,子进程sleep五秒。父进程陷入一个while死循环,每次循环开始,都waitpid一次,以WNOHANG模式。由于该模式不会阻塞,只要当前子进程没有结束,那么waitpid直接返回,去执行后面的if语句。

如果当前返回值为0,说明当前子进程没有结束,那么父进程可以去做些别的事情,一秒后再回来检测子进程有没有结束。

如果当前返回值> 0,说明子进程结束了,waitpid也成功了,此时返回值就是子进程的pid ,跳出循环。

输出结果:

在这里插入图片描述

子进程一共执行五秒后才退出,以非阻塞等待的模式,父进程就可以把这五秒拿去做其他事情。


进程替换

通过fork创建的子进程,会继承父进程的代码和数据,因此本质上还是在执行父进程的代码。但是我们大部分时候创建子进程的目的是用于执行其它代码的,而不是父进程自己的代码,那么此时就要有操作,让进程去执行其他进程的代码,这个操作就叫做进程替换

进程替换可以将别的进程的代码替换到自己的代码区,让自己去执行别人的代码。进程替换是通过exec系列系统调用接口实现的。

exec系列接口

先看看man手册中的exec

在这里插入图片描述

exec系列接口整体还是比较复杂的,它们包含在<unistd.h>中,总共有六个接口,我们一个一个来讲解。

execl接口

函数原型如下:

int execl(const char* pathname, const char* arg, ... /* (char  *) NULL */);

其接收两个固定的参数pathnamearg,以及一个可变参数...,也许你先前没了解过,这个...就是指可以接收任意个数的参数。

  • pathname:用于指定替换的进程的路径
  • arg:以何种方式运行进程
  • ...:以何种方式运行该进程

另外的,函数声明中还有一小段备注/* (char *) NULL */,其意图告诉使用者:==使用可变参数...时,必须以NULL空指针来结尾。

也许你现在还不能很好理解这个接口的用法,我们先看一个示例:

当前目录结构如下:

在这里插入图片描述

当前目录下有一个test.c,在dir目录下有一个process.exe进程,该进程中的代码如下:

#include <stdio.h>int main()
{for(int i = 0; i < 5; i++){printf("I am process.c!\n");}return 0;
}

也就是说,process.exe进程会输出五条I am process.c!,现在我们的目的是把进程process.exe替换到test.c中。

代码如下:

#include <stdio.h>
#include <unistd.h>int main()
{printf("execl start!\n");execl("./dir/process.exe", "dir/process.exe", NULL);printf("execl over!\n");return 0;
}

其中execl("dir/process.exe", "dir/process.exe", NULL);就是进程替换的语句

  • 第一个参数"dir/process.exe":用于指明该进程的路径
  • 第二个参数 "dir/process.exe":它和第一个参数虽然一样,但只是一个巧合,如果你在当前目录下,要运行process.exe,你会执行什么样的指令?应该就是dir/process.exe,也就是说这个参数相当于你在命令行中输入的内容,这里只是碰巧路径和命令行输入的内容是一致的
  • 第三个参数NULL:格式要求以NULL结尾

那么我们的代码就完成了先输出execl start!,然后替换process.exe到当前进程后,输出五条I am process.c!,最后输出execl over!,是这样吗?

看看结果:

在这里插入图片描述

可以看到,在execl start!之后,发送进程替换,把process.exe替换到当前进程后,输出了五条I am process.c!,但是最后一句execl over!消失了

这是因为,进程替换不是简单的执行别的进程的代码,而是用别的进程的代码区覆盖掉自己原先的代码区,所以execl 一旦执行,整个进程的代码都被替换了,那么printf("execl over!\n");就会被覆盖掉,最后不输出。

刚刚的例子意图展示,在自己写的两个进程中,发送进程替换。那么我们在shell中执行的指令是不是也是进程呢?是的!所以我们也可以尝试去替换一些指令当我们自己的进程中,比如ls,pwd等指令。

现在我们尝试替换系统自带的一些进程到自己的进程中:

#include <stdio.h>
#include <unistd.h>int main()
{printf("----------- execl start! -----------\n");execl("/usr/bin/ls", "ls", "-l", "-a", NULL);return 0;
}

我们现在要替换ls指令到自己的进程中,ls指令在/usr/bin/ls中,我们希望以ls -l -a的形式来调用这个进程,因此我们的三个参数 "ls", "-l", "-a"就是这个指令拆分出来的三个字符串。现在你应该更好地理解了,中间这部分参数的作用,最后以NULL结尾。

输出结果:

在这里插入图片描述

我们成功在当前进程中,替换了ls指令,并且是以ls -l -a的形式调用的。


execlp接口

函数原型如下:

int execlp(const char* file, const char* arg, ... /* (char  *) NULL */);
  • file:用于指定替换的进程名称
  • arg:以何种方式运行进程
  • ...:运行该进程的选项
  • 最后以NULL结尾

与刚刚的execl不同的是,第一个参数从pathname路径,变成了file文件名。

该接口的意思是:不用指明路径,只需指明替换的进程的名称,然后会自动去环境变量PATH指定的路径中查找

也就是说:可以在系统中直接执行的指令,无需指明路径,只需要指明文件名就可以替换

示例:

#include <stdio.h>
#include <unistd.h>int main()
{printf("----------- execl start! -----------\n");execlp("ls", "ls", "-l", "-a", NULL);return 0;
}

现在我们依然要执行ls -l -a,但是我们用了execlp接口,ls是系统自带的指令,所以不用指明路径,系统会自己去查找。

  • "ls":要替换的进程名称为ls
  • "ls", "-l", "-a":以ls -l -a形式执行
  • NULL结尾

执行结果:

在这里插入图片描述

和刚才一样,我们成功替换了ls指令到当前进程。


execle接口

函数原型如下:

int execle(const char *pathname, const char *arg, ... /*, (char *) NULL, char *const envp[] */);

从函数原型,我们可以看到一些熟悉的参数:

  • pathname:用于指定替换的进程的路径
  • arg:以何种方式运行进程
  • ...:以何种形式执行进程
  • NULL

唯一不同的是,要求我们在NULL后面额外加一个char* const envp[]

这个envp是一个指针数组,存储的是环境变量。一般来说,进程替换后,进程的环境变量是会用原先的环境变量的。

示例:

现在我们在process.exe中执行以下代码:

#include <stdio.h>int main(int argc, char* argv[], char* env[])
{for(int i = 0; env[i] != NULL; i++){printf("%s\n", env[i]);}return 0;
}

process.exe会输出所有的环境变量,然后我们再在test.c中替换这个进程:

#include <stdio.h>
#include <unistd.h>int main()
{printf("----------- execl start! -----------\n");execl("dir/process.exe", "dir/process.exe", NULL);return 0;
}

输出结果:

在这里插入图片描述

test.c输出了一句----------- execl start! -----------后就去替换了process.exe,随后输出了默认的环境变量表。

execle可以给替换后的进程指定环境变量表

示例:

#include <stdio.h>
#include <unistd.h>int main()
{printf("----------- execl start! -----------\n");char* const envp[] = {"A=aaa", "B=bbb", NULL};execle("dir/process.exe", "dir/process.exe", NULL, envp);return 0;
}

我自己伪造了一个环境变量表envp,并把它作为最后一个参数传递给替换后的进程。

输出结果:

在这里插入图片描述

可以看到,此时替换后的进程,环境变量表就变成了我们指定的变量表。


接下来我带大家回顾一下以上三个接口:

  • execl:指定路径,进行进程替换
  • execlp:指定文件名,进行进程替换
  • execle:指定路径,进行进程替换,并给替换后的进程指定环境变量表
字符含义
p用文件名代替路径,到环境变量PATH指定的路径查找
e指定环境变量

看到后面的三个接口,可以看到一些熟悉的身影:

int execv(const char *pathname, char *const argv[]);
int execvp(const char *file, char *const argv[]);
int execvpe(const char *file, char *const argv[], char *const envp[]);

除去v字符,pe的功能我们都了解,那么我就只以execv为案例:

execv接口

函数原型如下:

int execv(const char *pathname, char *const argv[]);

相比于execl,其少了一个...的可变参数,改为了一个argv数组,而...就是用来指定以何种方式调用进程,或者说指定选项的,带有v系列的接口,将这些选项存储在一个数组中,然后把数组传入

示例:

#include <stdio.h>
#include <unistd.h>int main()
{printf("----------- execl start! -----------\n");char* const argv[] = {"ls", "-l", "-a", NULL};execv("/usr/bin/ls", argv);return 0;
}

我希望以ls -l -a形式调用ls,于是把ls-l-a三个字符串存储到数组argv中,并以NULL结尾。

字符含义
llist,以列表的形式,把选项一个一个以参数形式传入
vvector,以数组的形式,把选项都存在数组中,将整个数组传入

汇总一下六个接口:

//list系列
int execl(const char* pathname, const char* arg, ... /* (char  *) NULL */);
int execlp(const char* file, const char* arg, ... /* (char  *) NULL */);
int execle(const char *pathname, const char *arg, ... /*, (char *) NULL, char *const envp[] */);
//vector系列
int execv(const char *pathname, char *const argv[]);
int execvp(const char *file, char *const argv[]);
int execvpe(const char *file, char *const argv[], char *const envp[]);
字符含义
p用文件名代替路径,到环境变量PATH指定的路径查找
e指定环境变量
llist,以列表的形式,把选项一个一个以参数形式传入
vvector,以数组的形式,把选项都存在数组中,将整个数组传入

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/7983.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

js实现json数据可编辑

背景 项目中有低代码平台&#xff0c;由于历史脏数据和非同步编辑的问题&#xff0c;偶尔会出现数据错乱的问题&#xff0c;希望有一个快捷的方式修改数据 之前在用Formily的时候有注意到designable/react 里面的json数据编辑功能非常不错如果能应用到项目里就完美了 design…

【数据结构】二叉树知识点详解

树的概念 树是一种非线性的数据结构&#xff0c;它是由n&#xff08;n>0&#xff09;个有限结点组成一个具有层次关系的集合有一个特殊的结点&#xff0c;称为根结点&#xff0c;根节点没有前驱结点除根节点外&#xff0c;其余结点被分成M(M>0)个互不相交的集合T1、T2、…

【贪心算法】单源最短路径Python实现

文章目录 [toc]问题描述Dijkstra算法Dijkstra算法的正确性贪心选择性质最优子结构性质 Dijkstra算法应用示例Python实现时间复杂性 问题描述 给定一个带权有向图 G ( V , E ) G (V , E) G(V,E)&#xff0c;其中每条边的权是非负实数&#xff0c;给定 V V V中的一个顶点&…

【busybox记录】【shell指令】expand

目录 内容来源&#xff1a; 【GUN】【expand】指令介绍 【busybox】【expand】指令介绍 【linux】【expand】指令介绍 使用示例&#xff1a; 把制表符转化为空格 - 默认输出 把制表符转化为空格 - 修改制表符转空格的个数 把制表符转化为空格 - 修改制表符转空格的个数…

四川易点慧电子商务抖音小店:潜力无限的新零售风口

在当今数字化浪潮中&#xff0c;电子商务已经成为推动经济发展的重要引擎。四川易点慧电子商务有限公司凭借其敏锐的市场洞察力和创新精神&#xff0c;成功在抖音小店这一新兴平台上开辟出一片新天地。本文将探讨四川易点慧电子商务抖音小店的潜力及其在新零售领域的影响力。 一…

多C段的美国站群服务器有什么用途?

多C段的美国站群服务器有什么用途? 多C段的美国站群服务器是一种常见的网络运营策略&#xff0c;其用途主要体现在以下几个方面&#xff1a; 多C段的美国站群服务器有什么用途? 1. 提高站点排名和流量 部署多个站点在不同的C段IP地址上&#xff0c;可以通过不同的IP地址发布…

OpenGrok使用

以前都是用的find&#xff0c;或者VScode里面的浏览&#xff0c;但是到了Android这个就不行了&#xff0c;代码太多了。都在用OpenGrok&#xff0c;所以俺也用一下。 这里有两个步骤&#xff0c;一个是安装&#xff0c;是一个使用。 1 安装 大概看了一下&#xff0c;安装是to…

关于Clion开发stm32printf重定向问题简单解决问题方法

title: 关于Clion开发stm32printf重定向问题简单解决问题方法 tags: STM32Clion 参考来源1 这是另一种方法 在printf 重定向的基础上加上 一句 setbuf(stdout,NULL); 参考来源2 自己写的笔记啦

小语言模型的潜力

想象一下这样一个世界&#xff1a;智能助手不在云端&#xff0c;而是在你的手机上&#xff0c;无缝了解你的需求并以闪电般的速度做出响应。这不是科幻小说&#xff0c;而是科幻小说。这是小语​​言模型 (SLM) 的希望&#xff0c;这是一个快速发展的领域&#xff0c;有可能改变…

罗德与施瓦茨 SMC100A信号发生器9kHz至3.2 GHz

罗德与施瓦茨 SMC100A信号发生器&#xff0c;9 kHz - 3.2 GHz 罗德与施瓦茨 SMC100A 以极具吸引力的价格提供出色的信号质量。它覆盖的频率范围为 9 kHz 至 1.1 GHz 或 3.2 GHz。输出功率为典型值。> 17 dBm。所有重要功能&#xff08;AM/FM/φM/脉冲调制&#xff09;均已集…

代码随想录算法训练营第六十天| 647. 回文子串,516.最长回文子序列,动态规划总结篇

题目与题解 参考资料&#xff1a;动态规划总结篇 647. 回文子串 题目链接&#xff1a;647. 回文子串 代码随想录题解&#xff1a;647. 回文子串 视频讲解&#xff1a;动态规划&#xff0c;字符串性质决定了DP数组的定义 | LeetCode&#xff1a;647.回文子串_哔哩哔哩_bilibili …

【busybox记录】【shell指令】unexpand

目录 内容来源&#xff1a; 【GUN】【unexpand】指令介绍 【busybox】【unexpand】指令介绍 【linux】【unexpand】指令介绍 使用示例&#xff1a; 空格转化成制表符 - 默认输出 空格转化成制表符 - 转换所有的空格 空格转化成制表符 - 指定制表位 常用组合指令&#…

构造照亮世界——快速沃尔什变换 (FWT)

博客园 我的博客 快速沃尔什变换解决的卷积问题 快速沃尔什变换&#xff08;FWT&#xff09;是解决这样一类卷积问题&#xff1a; ci∑ij⊙kajbkc_i\sum_{ij\odot k}a_jb_k ci​ij⊙k∑​aj​bk​其中&#xff0c;⊙\odot⊙ 是位运算的一种。举个例子&#xff0c;给定数列 a,…

小米手机miui14 android chrome如何取消网页自动打开app

搜索媒体打开应用 选择你要阻止打开的app&#xff0c;以github为例 取消勾选打开支持的链接。 参考&#xff1a;https://www.reddit.com/r/chrome/s/JBsGkZDkRZ

创建禁止操作区域并且添加水印

css 设置 &#xff1a; 引用换成自己就好 .overlay {z-index: 1000;cursor: none; /*设置为不可点击*/user-select: none; /*设置为不可选择*/contenteditable: false; /*设置为不可编辑*/draggable: false; /*设置为不可拖动*/position: absolute;top: 0;left: 0;width: 100…

git bash退出vim编译模式

解决方法&#xff1a; 1.按esc键&#xff08;回到命令模式&#xff09; 此时是没有分号让我们在后面输入命令的 2.按shift键: 3.再输入&#xff1a;wq&#xff0c;并按enter键 此时我们发现又回到git bash窗口 希望对大家有所帮助&#xff01;

一览函数式编程

文章目录 一、 什么是函数式编程1.1 编程范式1.1.1 命令式编程(Imperative Programming)范式1.1.2 声明式编程(Declarative Programming)范式1.1.3 函数式编程(Functional Programming)范式1.1.4 面向对象编程(Object-Oriented Programming)范式1.1.5 元编程(Metaprogramming)范…

(1day)致远M3 log 敏感信息泄露漏洞(Session)复现

前言 系统学习web漏洞挖掘以及项目实战也有一段时间了,发现在漏洞挖掘过程中难免会碰到一些历史漏洞,来帮助自己或是提高自己挖洞和及时发现漏洞效率,于是开始创建这个专栏,对第一时间发现的1day以及历史漏洞进行复现,来让自己更加熟悉漏洞类型以及历史漏洞,方便自己在后续的项…

商家制作微信小程序有什么好处?微信小程序的制作有哪些步骤和流程

微信小程序全面指南 微信小程序是微信生态系统中一项革命性的功能&#xff0c;为希望与庞大的微信用户群体互动的企业提供了独特的融合便捷性和功能性的体验。本全面指南深入探讨了微信小程序的世界&#xff0c;强调了其重要性、工作原理以及实际用例&#xff0c;特别是针对企…

开发组合php+mysql 人才招聘小程序源码搭建 招聘平台系统源码+详细图文搭建部署教程

随着互联网的快速发展&#xff0c;传统的招聘方式已经不能满足企业和求职者的需求。为了提高招聘效率&#xff0c;降低招聘成本&#xff0c;越来越多的人开始关注人才招聘小程序、在线招聘平台。分享一个人才招聘小程序源码及搭建&#xff0c;让招聘更加高效便捷。系统是运营级…