网页设计总结心得/什么叫做seo

网页设计总结心得,什么叫做seo,临沂做网站wyjzgzs,seo与网站建设序号系列文章1深度学习训练中GPU内存管理2深度学习PyTorch之数据加载DataLoader3深度学习 PyTorch 中 18 种数据增强策略与实现4深度学习pytorch之简单方法自定义9类卷积即插即用5深度学习PyTorch之13种模型精度评估公式及调用方法6深度学习pytorch之4种归一化方法(…
序号系列文章
1深度学习训练中GPU内存管理
2深度学习PyTorch之数据加载DataLoader
3深度学习 PyTorch 中 18 种数据增强策略与实现
4深度学习pytorch之简单方法自定义9类卷积即插即用
5深度学习PyTorch之13种模型精度评估公式及调用方法
6深度学习pytorch之4种归一化方法(Normalization)原理公式解析
7深度学习pytorch之19种优化算法(optimizer)解析
8深度学习pytorch之22种损失函数数学公式和代码定义
9DIY损失函数–以自适应边界损失为例
10深度学习PyTorch之动态计算图可视化 - 使用 torchviz 生成计算图

文章目录

        • 前言
        • 1. 什么是动态计算图?
        • 2. 为什么要可视化计算图?
        • 3. 使用 `torchviz` 生成计算图
          • 3.1 安装 `torchviz`
          • 3.2 生成计算图完整代码示例
          • 3.3 在训练过程中生成计算图
          • 3.4 代码解读
          • 3.5 生成的计算图
        • 4. `torchviz` 的更多应用
        • 5. 总结
        • 参考文献

前言

在深度学习模型的开发过程中,理解和可视化模型的计算图对于调试、优化和教学都具有重要意义。PyTorch 采用的是动态图机制,这使得每次前向传播时计算图都被动态创建。而 torchviz 是一个非常有用的工具,它可以将这些动态图转化为可视化图形,帮助我们更直观地理解模型的计算过程。在本篇博客中,我们将重点介绍如何使用 torchviz 生成和保存 PyTorch 模型的计算图,并结合实际训练代码进行展示。

1. 什么是动态计算图?

在 PyTorch 中,计算图并不是在模型初始化时构建好的,而是通过前向传播过程动态地构建的。这种动态特性意味着每次运行时,计算图会根据输入数据的形状和大小而变化,因此我们可以灵活地进行调试和优化。PyTorch 的动态图提供了较高的灵活性,允许在计算图中嵌入复杂的控制流结构(例如循环和条件判断)。

2. 为什么要可视化计算图?

可视化计算图的优势在于:

  • 调试:通过查看每一层的输入输出,可以快速发现模型设计上的问题。
  • 优化:通过分析计算图,可以识别瓶颈和不必要的计算,进而优化模型性能。
  • 教学:对于新手来说,计算图能够帮助他们理解深度学习模型的前向传播过程。

虽然 PyTorch 的动态图功能非常强大,但由于它不提供直接的计算图展示方式,因此我们需要借助外部工具 torchviz 进行可视化。

3. 使用 torchviz 生成计算图

torchviz 是一个能够将 PyTorch 计算图转化为图形的库,具体来说,它能够将计算图渲染为 DOT 格式并生成可视化图像文件(如 PNG 或 PDF)。我们通过以下几步可以生成计算图:

3.1 安装 torchviz

首先,你需要安装 torchviz 库。可以通过 pip 安装:

pip install torchviz

此时会直接将graphviz,torchziv两个都安装好,但是这种方法无法将graphviz导入系统路径。出现报错graphviz.backend.ExecutableNotFound: failed to execute ‘dot‘, make sure the Graphviz executables are***,需要从网址 Download | Graphviz下载graphviz的zip格式文件,解压后复制到以下python路径下即可。

在这里插入图片描述

3.2 生成计算图完整代码示例

核心语句只包括make_dot和render两个函数,其中:

  • make_dot(y) 会根据输入张量 y 的计算过程生成计算图。
  • render(“model_graph”, format=“png”) 将计算图保存为 PNG 图片。
import torch
import torch.nn as nn
import torch.optim as optim
from torchviz import make_dot# 定义一个简单的神经网络
class SimpleNN(nn.Module):def __init__(self):super(SimpleNN, self).__init__()self.fc1 = nn.Linear(2, 2)self.fc2 = nn.Linear(2, 1)def forward(self, x):x = torch.relu(self.fc1(x))x = self.fc2(x)return x# 创建模型实例
model = SimpleNN()# 输入数据
x = torch.randn(1, 2)# 前向传播
y = model(x)# 可视化计算图
dot = make_dot(y, params=dict(model.named_parameters()))
dot.render("model_graph", format="png")  # 保存图像为png文件

复制以上代码运行后生成model_graph.png如
在这里插入图片描述

3.3 在训练过程中生成计算图

假设你已经有了一个标准的 PyTorch 训练代码,并且希望在训练过程中生成计算图。我们可以在每次前向传播时使用 torchviz.make_dot 来生成计算图,并保存为 PNG 文件。

以下是一个集成计算图生成的训练代码示例:

import torch
from torchviz import make_dotfor epo in range(epo_num):print(epo)train_loss = 0train_acc = 0.0seg_model.train()for index, (img, label) in enumerate(train_dataloader):img = img.to(device)label = label.to(device)optimizer.zero_grad()output = seg_model(img)  # 得到模型输出# 使用 torch.sigmoid 激活函数output = torch.sigmoid(output)# 生成计算图并保存为 PNG 文件if index == 0:  # 只在第一个batch时生成计算图dot = make_dot(output, params=dict(seg_model.named_parameters()))dot.render("model_graph_epoch_{}_batch_{}".format(epo, index), format="png")  # 保存为 epoch_x_batch_y.png# 计算损失loss = criterion(output, label)loss.backward()iter_loss = loss.item()all_train_iter_loss.append(iter_loss)train_loss += iter_lossoptimizer.step()# 计算准确率output_1 = output.argmax(dim=1)label_1 = label.argmax(dim=1)correct = torch.eq(output_1, label_1).sum().item()iter_acc = correct / label_1.numel()all_train_iter_acc.append(iter_acc)train_acc += iter_acc
3.4 代码解读
  1. 前向传播output = seg_model(img) 这一行执行了前向传播,计算了模型的输出。

  2. 计算图生成:在每个 epoch 的第一个 batch 中,使用 make_dot(output, params=dict(seg_model.named_parameters())) 来生成计算图。output 是模型的输出,而 seg_model.named_parameters() 则提供了模型的参数信息,这对于生成完整的计算图非常有帮助。

  3. 保存计算图:通过 dot.render() 将计算图保存为 PNG 格式的文件。文件名包含当前的 epoch 和 batch 索引,以便于区分。

    dot.render("model_graph_epoch_{}_batch_{}".format(epo, index), format="png")
    
3.5 生成的计算图

计算图会包含模型中的每个操作(如矩阵乘法、加法等),以及这些操作之间的连接关系。通过计算图(以下示例),你可以清楚地看到模型的每一步计算如何进行。
在这里插入图片描述

4. torchviz 的更多应用

除了在训练过程中生成计算图,torchviz 还可以用于以下场景:

  • 单步调试:如果你的模型非常复杂,可以在某个特定步骤(如单个前向传播)生成计算图,帮助调试。

  • 模型设计:在设计新的网络架构时,通过生成计算图,可以确保每一层的输入输出形状是正确的。

  • 计算性能分析:通过分析计算图中的每个节点,可以识别出性能瓶颈并进行优化。

5. 总结

PyTorch 的动态图特性使得每次前向传播时计算图都是动态生成的,而 torchviz 则提供了一个简便的工具,可以将这些动态生成的计算图可视化为图像文件。通过将 torchviz 集成到训练代码中,我们可以在训练过程中实时生成计算图,这不仅有助于我们调试模型,还可以为教学和研究提供更清晰的解释。

参考文献
  • torchviz GitHub
  • PyTorch 官方文档

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/74485.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

K8S学习之基础四十五:k8s中部署elasticsearch

k8s中部署elasticsearch 安装并启动nfs服务yum install nfs-utils -y systemctl start nfs systemctl enable nfs.service mkdir /data/v1 -p echo /data/v1 *(rw,no_root_squash) >> /etc/exports exports -arv systemctl restart nfs创建运行nfs-provisioner需要的sa账…

Go红队开发—CLI框架(一)

CLI开发框架 命令行工具开发,主要是介绍开发用到的包,集成了一个框架,只要学会了基本每个人都能开发安全工具了。 该文章先学flags包,是比较经典的一个包,相比后面要学习的集成框架这个比较自由比较细化点&#xff0…

eclipse [jvm memory monitor] SHOW_MEMORY_MONITOR=true

eclipse虚拟机内存监控设置SHOW_MEMORY_MONITORtrue D:\eclipse-jee-oxygen-2-win32-x86_64\workspace\.metadata\.plugins\org.eclipse.core.runtime\.settings org.eclipse.ui.prefs (文件比较多,别找错了) SHOW_MEMORY_MONITORtrue 重启 -xms 1024…

量子计算与人工智能的融合:下一代算力革命

1. 引言:算力需求的飞速增长与量子计算的潜力 在信息技术飞速发展的今天,人工智能(AI)已经渗透到我们生活的方方面面,从智能助手到自动驾驶,再到医疗诊断,AI 的应用场景日益广泛。然而&#xf…

【网络】网关

【网络】网关 网关 是计算机网络中用于连接两个不同网络的设备或服务器,它充当着“翻译器”和“转发器”的角色,将数据包从一个网络传递到另一个网络,并在必要时进行协议转换和数据重包装。 主要功能 数据转发:当本地网络设备发…

Axure大屏可视化模板:赋能多领域,开启数据展示新篇章

在当今这个数据爆炸的时代,数据已经成为各行各业的核心资产。然而,如何高效、直观地展示数据,并将其转化为有价值的决策依据,成为了许多企业和组织面临的共同挑战。Axure大屏可视化模板,作为一款强大的数据展示工具&am…

数据不外传!通过内网穿透实现绿联NAS远程访问的安全配置方案

文章目录 前言1. 开启ssh服务2. ssh连接3. 安装cpolar内网穿透4. 配置绿联NAS公网地址 前言 大家好,今天要带给大家一个超级酷炫的技能——如何让绿联NAS秒变‘千里眼’,通过简单的几步操作就能轻松实现内网穿透。想象一下,无论你身处何地&a…

面试题精选《剑指Offer》:JVM类加载机制与Spring设计哲学深度剖析-大厂必考

一、JVM类加载核心机制 🔥 问题5:类从编译到执行的全链路过程 完整生命周期流程图 关键技术拆解 编译阶段 查看字节码指令:javap -v Robot.class 常量池结构解析(CONSTANT_Class_info等) 类加载阶段 // 手动加载…

WordPress分类目录绑定二级域名插件

一.子域名访问形式 1.wordpress 分类目录 转换为 子域名 (绑定二级域名)形式 2.wordpress 页面转换为 子域名 (绑定二级域名) 形式 3.wordpress 作者页转换为 子域名 (绑定二级域名)形式 4.为不同子域名…

Shopify Checkout UI Extensions

结账界面的UI扩展允许应用开发者构建自定义功能,商家可以在结账流程的定义点安装,包括产品信息、运输、支付、订单摘要和Shop Pay。 Shopify官方在去年2024年使用结账扩展取代了checkout.liquid,并将于2025年8月28日彻底停用checkout.liquid…

华为HCIE方向那么多应该如何选择?

在华为认证体系里,HCIE作为最高等级的认证,是ICT领域专业实力的有力象征。HCIE设置了多个细分方向,这些方向宛如不同的专业赛道,为期望在ICT行业深入发展的人提供了丰富的选择。今天,咱们就来好好聊聊华为HCIE方向的相…

FastGPT原理分析-数据集创建第二步:处理任务的执行

概述 文章《FastGPT原理分析-数据集创建第一步》已经分析了数据集创建的第一步:文件上传和预处理的实现逻辑。本文介绍文件上传后,数据处理任务的具体实现逻辑。 数据集创建总体实现步骤 从上文可知数据集创建总体上来说分为两大步骤: &a…

vue中keep-alive组件的使用

keep-alive是vue的内置组件,它的主要作用是对组件进行缓存,避免组件在切换时被重复创建和销毁,从而提高应用的性能和用户体验。它自身不会渲染一个 DOM 元素,也不会出现在父组件链中。使用时,只需要将需要缓存的组件包…

进程间通信(匿名管道) ─── linux第22课

目录 进程间通信 进程间通信目的 进程间通信的发展 进程间通信分类 1. 管道 2. System V IPC 3. POSIX IPC 管道 什么是管道 站在文件描述符角度-深度理解管道 站在内核角度-管道本质 ​编辑 匿名管道 测试匿名管道的读写 匿名管道的四大现象: 匿…

架构思维:通用系统设计方法论_从复杂度分析到技术实现指南

文章目录 Question订单履约原始架构痛点目标架构架构图说明关键设计点优点 设计方法论复杂来源解决方案评估标准从设计原则出发 技术实现 (以选型Redis为例)Redis消息队列的实现细节高可用设计 总结 Question 我们经常聊如何设计一个比较完善的系统&…

Excel(实战):INDEX函数和MATCH函数、INDEX函数实战题

目录 经典用法两者嵌套查值题目解题分析 INDEX巧妙用法让数组公式,自动填充所有、有数据的行/列INDEX函数和SEQUENCE函数 经典用法两者嵌套查值 题目 根据左表查询这三个人的所有数据 解题分析 INDEX函数的参数:第1个参数是选定查找范围&#xff0c…

ECharts仪表盘-仪表盘25,附视频讲解与代码下载

引言: ECharts仪表盘(Gauge Chart)是一种类似于速度表的数据可视化图表类型,用于展示单个或多个变量的指标和状态,特别适用于展示指标的实时变化和状态。本文将详细介绍如何使用ECharts库实现一个仪表盘,…

清华大学.智灵动力-《DeepSeek行业应用实践报告》附PPT下载方法

导 读INTRODUCTION 今天分享是由清华大学.智灵动力:《DeepSeek行业应用实践报告》,主要介绍了DeepSeek模型的概述、优势、使用技巧、与其他模型的对比,以及在多个行业中的应用和未来发展趋势。为理解DeepSeek模型的应用和未来发展提供了深入的…

VSCODE上ckg_server_linux进程占用CPU过多

现象描述 每次一打开VSCODE,ckg_server_linux进程就启动了,并且一直运行,且占用CPU过高; 推测应该是某个插件的问题导致的; 问题处理 本地搜索了一下,发现是 marscode插件影响的; 禁用marsc…

【大模型理论篇】CogVLM:多模态预训练语言模型

1. 模型背景 前两天我们在《Skywork R1V: Pioneering Multimodal Reasoning with Chain-of-Thought》中介绍了将ViT与推理模型结合构造多模态推理模型的案例,其中提到了VLM的应用。追溯起来就是两篇前期工作:Vision LLM以及CogVLM。 今天准备回顾一下Cog…